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Abstract
In this paper, we investigate "split-second phantom attacks," a sci-

entific gap that causes two commercial advanced driver-assistance

systems (ADASs), Telsa Model X (HW 2.5 and HW 3) and Mobileye

630, to treat a depthless object that appears for a few milliseconds

as a real obstacle/object. We discuss the challenge that split-second

phantom attacks create for ADASs. We demonstrate how attackers

can apply split-second phantom attacks remotely by embedding

phantom road signs into an advertisement presented on a digital

billboard which causes Tesla’s autopilot to suddenly stop the car

in the middle of a road and Mobileye 630 to issue false notifica-

tions. We also demonstrate how attackers can use a projector in

order to cause Tesla’s autopilot to apply the brakes in response

to a phantom of a pedestrian that was projected on the road and

Mobileye 630 to issue false notifications in response to a projected

road sign. To counter this threat, we propose a countermeasure

which can determine whether a detected object is a phantom or real

using just the camera sensor. The countermeasure (GhostBusters)
uses a "committee of experts" approach and combines the results

obtained from four lightweight deep convolutional neural networks

that assess the authenticity of an object based on the object’s light,

context, surface, and depth. We demonstrate our countermeasure’s

effectiveness (it obtains a TPR of 0.994 with an FPR of zero) and

test its robustness to adversarial machine learning attacks.
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1 Introduction
After years of research and development, advanced driver assis-

tance systems (ADASs) are now be used to support/replace manual
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Figure 1: In practice, despite the fact that the Tesla Model
X (HW 2.5) is equipped with radar and ultrasonic sensors,
it recognizes a depthless person (phantom) projected on the
road in front of it as a real obstacle due to its safety policy.

driving with automated functionality [35, 53]. ADASs utilize arti-

ficial intelligence (AI) models which process data obtained from

various sensors in real-time in order to steer the car, recognize

traffic signs, trigger an alert when the car deviates from its lane, etc.

Since these systems rely heavily on image input, their robustness

against adversarial machine learning attacks has been tested in var-

ious studies in the last few years [10, 17, 31, 42, 54, 55, 66]. These

studies have contributed to improved understanding of the limits of

AI models and the need to increase their robustness against attacks

that can endanger the lives of drivers, passengers, and pedestrians.

In this paper, we identify a limitation of AI models that can be

exploited by attackers to perform a new type of attack called a "split-

second phantom attack." This attack exploits a weakness of ADASs

where (1) projected or digitally displayed imagery is perceived as a

real object (i.e., phantom imagery), and (2) the imagery only has to

appear briefly (for a few milliseconds) in order to be detected by the

ADAS. Split-second phantom attacks fool AI models by presenting

an image very briefly, for the minimum amount of time required

to be captured by the camera, thus remaining imperceptible to the

human eye. This attack raises great concern, because unskilled

attackers can use split-second phantom attacks against ADASs

with little fear of getting caught, because (1) there is no need to

physically approach the attack scene (a drone can project the image

or a digital billboard can display it), (2) there will be no identifying

physical evidence left behind, (3) there will likely be few witnesses,

since the attack is so brief, and (4) it is unlikely that the target of

the attack will try to prevent the attack (by taking control of the

vehicle), since he/she won’t notice anything out of the ordinary.

Split-second phantom attacks are optical illusions that challenge

computer vision algorithms. Since some commercial ADASs rely

purely on imagery input obtained from video cameras (e.g., Mobil-

eye 630) which does not have any depth, the authenticity of the

detected objects cannot be verified at all, causing such ADASs to
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treat a phantom as a real object. One might argue that the authen-

ticity of phantoms can be determined by commercial ADASs that

use sensor fusion by cross-correlating the camera sensor with data

obtained from depth sensors (e.g., radar, LiDAR, and ultrasonic sen-

sors), however we show that the most advanced semi-autonomous

vehicle (the Tesla Model X) resolves the disagreement between the

camera and the integrated depth sensors (radar and ultrasonic sen-

sors) regarding a phantom by treating the phantom as real, despite

the fact that it does not have any depth (see Fig. 1). As a result,

split-second phantom attacks are de facto a scientific gap.

To mitigate these attacks, we propose GhostBusters: a committee

of machine learning models which validates objects detected by

the on-board object detector. The GhostBusters can be deployed on

existing ADASs without the need for additional sensors and does

not require any changes to be made to existing road infrastruc-

ture. It consists of four lightweight deep CNNs which assess the

realism and authenticity of an object by examining the object’s re-

flected light, context, surface, and depth. A fifth model uses the four

models’ embeddings to identify phantom objects. This approach

outperforms the baseline method and achieves an AUC of over

0.99 and a TPR of 0.994 with a threshold set to an FPR of zero.

When applying the countermeasure to seven state-of-the-art road

sign detectors, we were able to reduce the attack success rate from

99.7-81.2% without our module to 0.01% when using our module.

Finally, we perform an ablation study and find that by separating

the models, our solution is less reliant on specific features. This

makes it more resilient than the baseline model and robust against

potential adversarial attacks.

In summary, this papermakes the following contributions: (1)We

expose a new type of attack against ADASs that does not leave any

forensic evidence, is difficult to observe, and can be applied remotely,

each of which limits the risk to the attacker. (2) We demonstrate the

split-second phantom attacks on two popular commercial ADASs

(Mobileye 630 and Tesla Model X HW 2.5/3) in real-life scenarios. (3)

We propose a robust and efficient software-based countermeasure

which can identify the attack using the camera sensor alone. The

trained models, datasets, and source code are available online.
1

The paper is structured as follows: First, we discuss why split-

second phantom attacks represent a scientific gap (Section 3), dis-

cuss the significance of the threat model (Section 4), analyze the

factors that influence on the attack (Section 5), and demonstrate

these attacks on Mobileye 630 and the Tesla Model X HW 2.5/3

(Section 6). Then, we propose our countermeasure, evaluate it, and

analyze its performance (Section 7). Finally, we discuss our findings

and suggest future work (Section 8).

2 Background, Scope & Related Work
In this section, we provide the necessary background on ad-

vanced driver-assistance systems and review attacks against them.

Advanced driver-assistance systems are defined as "vehicle-based
intelligent safety systems which could improve road safety in terms
of crash avoidance, crash severity mitigation, and protection and
post-crash phases." [11]. ADASs are integrated into cars and range

from no automation (level 0) to fully automated systems (level 5)

[15]. ADASs consist of sensors, actuators, and decision-making

algorithms. Decision-making algorithms (e.g., collision avoidance

1
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systems) rely on AI models that base their actions (regarding, for

example, notifications to drivers, alerts, steering, braking, etc.) on

sensor input. In recent years, many studies have demonstrated how

these AI models can be tricked using sensor attacks.

Visual spoofing attacks were demonstrated by [10, 17, 31, 42,

54, 55, 66]. Several studies have demonstrated adversarial machine

learning attacks in the physical world against traffic sign recog-

nition algorithms [10, 17, 54, 55, 66] by: (1) embedding two traffic

signs in one with a dedicated array of lenses that causes a different

traffic sign to appear depending on the angle of view [54], and

(2) adding a physical artifact (e.g., stickers, graffiti) that looks in-

nocent to the human eye but can mislead traffic sign recognition

algorithms [10, 17, 55, 66]. Two studies demonstrated adversarial

machine learning attacks in the physical world against commercial

ADASs by: (1) printing traffic signs that contain negligible changes

that fool the road sign detection mechanism of HARMAN’s ADAS

[42], and (2) by placing stickers on the road that caused Telsa’s

autopilot to deviate to the lane of oncoming traffic [31].

Other attacks against sensors were demonstrated by [7, 49, 51,

57, 65]. One study [65] demonstrated spoofing and jamming attacks

against Tesla’s radar and ultrasonic sensors which caused the car

to misperceive the distance to nearby obstacles. Another study [51]

showed that GPS spoofing can cause Tesla’s autopilot to navigate in

the wrong direction. Black-box and white-box adversarial attacks

on LiDAR were recently presented by [7, 49, 57].

3 The Scientific Gap
In this section, we define phantoms and split-second phantom

attacks, and discuss why they are considered scientific gaps.

We define a phantom as a depthless visual object used to de-

ceive ADASs and cause these systems to perceive the object and

consider it real. A phantom object can be created by a projector

or be presented via a digital screen (e.g., billboard). The depthless

object presented/projected is made from a picture of a 3D object

(e.g., pedestrian, car, truck, motorcycle, traffic sign). The phantom

is intended to trigger an undesired reaction from an ADAS. In the

case of an automation level 0 ADAS, the reaction would be a driver

notification about an event (e.g., maximal speed allowed) or even an

alarm (e.g., collision avoidance). For an automation level 2 ADAS,

the phantom could trigger an automatic dangerous reaction from

the car (e.g., sudden braking). A split-second phantom attack is a

phantom that appears for a few milliseconds and is treated as a real

object/obstacle by an ADAS. There are two fundamental reasons

why ADASs are susceptible to split-second phantom attacks:

1) Perceptual weakness: Phantoms challenge the perception

of computer vision algorithms, because such algorithms do not

base their decisions on personal experience, authenticity, or other

factors that are taken into account by humans. Most algorithms

are the output of a training phase performed using a dataset that

consists of real objects. As a result, computer vision algorithms are

not trained to identify phantoms and ignore them. Instead, these

algorithms classify objects with high confidence if parts of the

object (e.g., geometry, edges, outline) are similar to the training

examples. Specifically, these algorithms do not take the following

aspects into consideration: (i) Context - An object’s location and

local context within the frame are not taken into account. Fig. 2

presents an example where a phantom traffic sign projected on the

https://github.com/ymirsky/GhostBusters


Figure 2: Left: a commercial ADAS (Mobileye 630) classi-
fies a projection of a traffic sign on a tree. Middle: the
Faster_rcnn_inception_v2 [3] classifies a traffic sign that
was created by reducing the green component of the RGB
value of the background color in Δ=3 from (128,128,128) to
(128,125,128) and using only 25% of the pixels. Right: Tesla
Model X recognizes a depthless phantom of a car as real.

tree is treated as a real traffic sign by a commercial ADAS (Mobileye

630). (ii) Color - An object’s color is not taken into account. Fig.

2 shows how Faster_rcnn_inception_v2 [3] classifies a phantom

traffic sign that was created by reducing the green component in

Δ=3 from the gray background (128,128,128) to (128,125,128) and is

made from gray colors. This is also true for other state-of-the-art

traffic sign recognition algorithms (see Appendix 1 for more details).

(iii) Texture - An object’s texture is not taken into account. Fig. 2

shows how Faster_rcnn_inception_v2 [3] recognizes a traffic sign

composed of 25% of the pixels (which were randomly drawn) from

the original traffic sign as a real traffic sign. This is also true for

other s.o.t.a traffic sign recognition algorithms (see Appendix 1

for more details). Fig. 2 shows how a projected traffic sign whose

surface consists of the leaves of a tree is reported by Mobileye 630.

Therefore, although phantoms are perceived by humans as obvi-

ous fakes (defective, skewed, etc.), an ADAS will classify a phantom

simply because its geometry matches its training examples.

2) Disagreement between sensors: Phantoms create AI mod-

els that rely on sensor fusion, an edge case where there is complete

disagreement between an obstacle that was detected via a video

camera and other depth sensors. In the face of phantoms, the Tesla

trusts imagery input over radar input and considers depthless pro-

jected/presented objects as real obstacles. There are several reasons

for this phenomenon which occurs despite the fact that sensor

fusion is employed by the car: (1) Pedestrian detection via radar

becomes unreliable from a range of 10-15 meters in real scenes

due to reflections from other objects (humans have a weak radar

cross-section) [19]. This fact requires the car to put more trust in

video cameras for which pedestrian detection is considered highly

reliable [19]. (2) Large areas of the vehicle are only covered by video

cameras (see Fig. 13 in Appendix), so the car does not have any way

of validating its findings with a depth sensor in these areas. (3) It

is common practice in the automobile industry to program cars to

ignore stationary objects identified by radar in order to focus on

moving objects [56]. The implications of this fact are mentioned

in the Tesla manual [60], other vendors’ manuals [56], and in the

Table 1: Mapping an attack to a desired result.

Desired Result Triggered Reaction
from the ADAS

Type of
Phantom

Location of
Appearance

Traffic

collision

Sudden braking

Stop sign Building,

billboardNo entry sign

Obstacle (e.g., car) Road

Reckless/illegal

driving behavior

Fast driving Speed limit

Building,

billboardTraffic jam

Decreasing driving speed Speed limit

Stopping No entry sign

Directing traffic

to specific roads

Avoiding certain roads No entry sign

NTSB report [47] where drivers are warned that the car’s autopi-

lot may not detect stationary obstacles. As a result, the car places

greater confidence in other sensors to detect stationary obstacles

(see how Tesla detects a stationary phantom car in Fig. 2).

Disagreement regarding the existence of an obstacle among sen-

sors must be resolved by an ADAS in real-time (in a few millisec-

onds), and an incorrect decision can endanger pedestrians, drivers,

and passengers. Since car manufacturers want to prevent loss of

life and accidents, a “safety first” approach is implemented for au-

tonomous driving [27], and phantoms are treated as real objects by

cars with integrated radar and ultrasonic sensors (see Fig. 2).

One may think that split-second phantom attacks can be dis-

missed by increasing the threshold for the period that a detected

object must appear in the video stream before the object is treated

as real by an ADAS. Considering the fact that ADASs must be able

to react to a real obstacle that suddenly appears on the road, setting

a minimal threshold that is too high (e.g., one second) may make

it impossible for the ADAS to react in time. We do not consider

split-second phantom attacks a bug, because they are not the result

of poor code implementation. We consider phantoms a scientific

gap, because they exploit a perceptual weakness that cannot be

effectively addressed without decreasing the level of safety.

4 Threat Model
In this section, we present remote threat models for applying

split-second phantom attacks and discuss their significance.

We consider an attacker as any malicious entity with the inten-

tion of creating chaos by performing a split-second phantom attack

that will result in unintended car behavior. Table 1 maps the desired

result (e.g., reckless driving behavior), triggered reaction (e.g., fast

driving), and the phantom required (e.g., traffic sign).

In this threat model, the attacker simply presents the phantom

for a few milliseconds, starting and stopping it whenever he/she

wishes. The attacker can embed the phantom in a digital advertise-

ment presented on a hacked digital billboard that faces the Internet

[34, 61] or project the phantom (e.g., on a road, building, etc.) via a

portable projector mounted to a drone. Since the phantom is pre-

sented for just a few milliseconds, it is very difficult for humans

to detect. The attacker can amplify the desired effect by using a

swarm of drones or a set of hacked digital billboards.

Split-second phantom attacks are a class of visual spoofing. Their

significance with respect to related work [10, 17, 42, 54, 55, 66] is

that they: (1) can be applied remotely by using a drone equipped

with a portable projector or by embedding objects into digital ad-

vertisements presented on hacked digital billboards that face the

Internet [34, 61] and are located near roads, (2) do not leave any



physical forensic evidence at the attack scene that can be used by

investigators to trace the incident to the attackers, (3) do not require

any complex preprocessing or professional sensor spoofing skills,

and (4) allow attackers to manipulate ADAS obstacle detection

systems (e.g., by using phantoms of cars, pedestrians, etc.).

5 Attack Analysis
In this section, we analyze the various factors that influence the

success rate of split-second phantom attacks against a commercial

ADAS: the distance and duration of the projected phantom.

The experiments presented in this section are performed against

two commercial ADASs: (1) Mobileye 630 PRO is considered the

most advanced external ADAS for automation level 0-1 cars. Mobil-

eye sells its ADAS technology to 70% of car manufacturers [33]. In

the rest of this section we refer to Mobileye 630 PRO as Mobileye.

Mobileye relies solely on computer vision algorithms and consists

of a video camera (that is installed on the front windshield) and a

display which provides visual and audible alerts. Mobileye supports

road sign recognition, car collision warning, and other features [39].

We installed Mobileye in a Renault Captur 2017 via their official

local distributor. (2) The Tesla Model X (HW 2.5/3) is considered
the most advanced commercial semi-autonomous car. In the rest of

this section we refer to the Tesla Model X (HW 2.5/3) as Tesla. This

model relies on eight surround video cameras, 12 ultrasonic sen-

sors, and front-facing radar (see Fig. 13 in Appendix). These models

support autopilot driving, cruise control, collision avoidance, and

stop sign recognition. The most recent firmware was installed at

the time the experiments were conducted.

5.1 Influence of Distance
There are two factors that determine whether the attack can be

applied from a given distance: (1) The projection’s intensity. If the

projection’s intensity is too weak, the phantom will not be captured

by the video camera, because light deteriorates with distance. (2)

The size of the phantom. If the projected object is too small, it

will be ignored by the ADAS, because it is located far from the

ADAS and is not considered an immediate obstacle or road sign

that needs to be considered. We analyze how these factors influence

the success of a split-second phantom attack against an ADAS with

respect to the distance between the phantom and the ADAS.

5.1.1 Experimental Setup: We used a white screen to project the

phantoms. We created 10 road signs with different opacity levels

(10%, 20%,.., 100%). In addition, we created six different sized phan-

toms of a road sign with diameters smaller than our white screen

(0.16, 0.25, 0.42, 0.68, 1.1, and 1.25 meters). We projected the 10

phantom road signs on the white screen via a Nebula Capsule pro-

jector, a portable projector with an intensity of 100 lumens and 854

x 480 resolution [2].

5.1.2 Experiment Protocol: We started by placing the ADAS (Mo-

bileye and Tesla) one meter from the screen. In the first experiment,

we projected the phantoms that we created (with varied brightness

levels) on the screen. The 10 phantoms projected resulted in various

projection intensities on the white screen, since they were based on

various opacity levels. We kept projecting the phantoms (starting

with the phantom with the strongest projection intensity) until the

phantom was not identified by the ADAS. We measured the inten-

sity of projection (in lux) on the white screen with a professional

optical sensor and the distance between the ADAS and the white

screen. In the second experiment, we projected the six different

sized phantoms (starting with the largest one) until the phantom

was not identified by the ADAS. Next we increased the distance

between the screen and the ADAS by two meters and performed

the experiments again.

The first dataset obtained at the end of these experimentsmapped

the minimal projection intensity (in lux) to the maximal distance

at which the ADAS was able to detect the phantom (meters). We

calculated the difference (Δ) between a measurement as it was

captured on the screen (in lux) and the ambient light (in lux) as

it was captured on the white screen. We consider this difference

to be the additional projection intensity the attacker must use to

project a phantom on the surface with respect to a given ambient

light value. The second dataset mapped the minimal phantom size

to the maximal distance at which the ADAS detects the phantom.

5.1.3 Results & Conclusions: Fig. 3 presents graphs that map the

minimal projection intensity to themaximal range at which it can be

detected by the ADAS. The results indicate that: (1) As the distance

between the ADAS and the phantom increases, a stronger projector

is required so the phantom will be detected by the ADAS. This is

due to the fact that light deteriorates with distance. (2) It is easier to

apply phantom attacks at night (in the dark) with weak projectors

than during the day. This is due to the fact that the ambient light

at night is zero lux, and during the day it is 1,000 - 2,000 lux. (3)

Weaker intensities of projection (lux) are required to attack Tesla

from a greater distance than that required to attack Mobileye. This

can be explained by the fact that Mobileye relies on a single video

camera while the area in front of the Tesla is covered by three HD

video cameras (see Fig. 13 in Appendix).

Fig. 3 presents graphs that map the minimal phantom size to

the maximal range at which it can be detected by Mobileye and

Tesla. As can be seen from the graphs, the results indicate that: (1)

As the distance between the ADAS and the phantom increases, a

larger phantom is required so the phantom will be detected by the

ADAS as a nearby road sign. (2) The graphs obtained for Mobileye

and Tesla show similar (almost identical) behavior. This can be

explained by the fact that the size of the projected road sign (as

it was captured by the video camera of the ADAS) is indicative

of its location with respect to the ADAS and whether it should

be considered by the ADAS. In Appendix 2, we explain how the

phantom size and projection intensity required to attack an ADAS

that is located beyond the ranges measured in our experiments can

be calculated without additional experiments.

5.2 Influence of the Duration of the Phantom
Here we analyze how the duration of a split-second phantom

attack influences the success rate of the attack. A phantom is the

output of a digital visualization instrument (billboard, projector)

which is sampled by a CMOS sensor of an ADAS video camera. We

assume that attackers do not have any prior knowledge regarding:

(1) the FPS rate of the video camera of the attacked ADAS, and

(2) how the detection model works. We also assume that attackers

cannot synchronize their digital visualization instrument to the

video camera of the attacked ADAS (due to the nature of the attack).

5.2.1 Experimental Setup: We analyze the success rate of the attack

as it is applied via a 24 FPS digital visualization instrument (the

projector we used). In order to do so, we created 24 videos. Each of



Figure 3: Left to right:Mapping distance between anADAS to a required intensity of projection (left) and phantom size (middle).
Attack’s success rate as a function of its duration (right).

the 24 videos was used to evaluate the success rate of a split-second

phantom attack for a specific duration of time. In order to simulate

a real-world scenario where the phantom may appear in any frame,

we shifted the time that the phantom appeared in each second in the

video: The first video was created for a phantom that is projected

for one frame (a duration of 41 milliseconds) and consists of 24

seconds, where in each second only one frame presents a phantom.

In the first second of the first video, a phantom is presented in the

first frame (the other 23 frames are empty). In the next second of the

first video, a phantom is presented in the second frame (the other

frames are empty). This pattern continues until the twenty-fourth

second of the video, in which a phantom is presented in the twenty-

fourth frame (the other frames are empty). The second video was

created for a phantom that is projected for two consecutive frames

(a duration of 82 milliseconds) and consists of 23 seconds, where in

each second two consecutive frames present a phantom. In the first

second of the second video, a phantom is presented in the first and

second frames (the other 21 frames are empty). In the next second

of the first video, a phantom is presented in the second and the

third frames (the other 21 frames are empty). This pattern continues

until the twenty-third second of the video, in which a phantom

is presented in the twenty-second and twenty-third frames (the

other 21 frames are empty). This pattern continues until the twenty-

fourth video which was created for a phantom that is projected

for 24 consecutive frames (a duration of one second) and is one

second long. We created 24 videos of the split-second phantom

attack of stop signs (for Tesla) and speed limit signs (for Mobileye).

We placed a projector (Nebula 24 FPS [2]) in front of a white screen

that was placed two meters in front of the ADAS.

5.2.2 Experiment Protocol: We tested Tesla and Mobileye with the

videos that we created. Each video was presented 10 times. We

report the success rate of the attack for each projection duration

(the number of times that the phantom was detected by the ADAS

divided by the total number of times the phantom appears).

5.2.3 Results & Conclusions: Fig. 3 presents the results of this set
of experiments. An analysis of Fig. 3 reveals four interesting ob-

servations: (1) Phantom road signs with a duration that exceeds

416 milliseconds are detected by the tested ADAS with accuracy of

100%. This can be explained by the nature of the ADAS which is

required to respond quickly to road signs. (2) The graphs present

sigmoid behavior in the tested range: at short projection durations,

the graphs show a 0% success rate which continues until a specific

point at which the success rate quickly increases to 100% and is

maintained at long projection durations. We concluded that the

tested ADASs are configured to consider an object if it appears in a

predefined threshold of t consecutive frames in the captured video

stream, probably in order to decrease false positive detections. As a

result, when a phantom appears in at least t consecutive frames in

the captured video stream it is considered by the ADAS as a real

object. When the phantom appears in less than t consecutive frames

in the captured video stream, it is ignored by the ADAS. There is a

probabilistic area at which the success rate of a split-second phan-

tom attack is between 1-99% where a phantom projected for a given

duration can appear in t consecutive frames or in t-1 consecutive
frames in the captured video stream depending on the differences in

the FPS rate and synchronization of the video camera and digital vi-

sualization instrument. (3) The success rate for the same projection

duration varies, depending on the ADAS employed (e.g., a phantom

road sign that appears for 333 milliseconds is detected by Mobileye

100% of the time, but it is detected by Tesla just 35.3% of the time).

6 Evaluation
In this section, we demonstrate split-second phantom attacks on

commercial ADASs while driving. The attack is validated by: (1)

embedding a road sign into a digital advertisement presented on a

hacked digital billboard, and (2) projecting a road sign via a portable

projector mounted on a drone. The attacks are demonstrated against

a Renault Captur (equipped with Mobileye 630) and a Tesla Model

X (HW 2.5 and HW 3).

6.1 Phantom Attack via a Digital Billboard
We demonstrate the attack via a digital billboard by embedding

a phantom into an existing advertisement and displaying it for a

few milliseconds in a way that the imagery itself is hard to perceive.

To accomplish this, we developed Algorithm 1 to embed phantoms

into existing ads in a way that won’t be recognized by the human

eye. Based on the output of Algorithm 1, we embedded a phantom

road sign into a McDonald’s advertisement and applied the attack

against Mobileye and Tesla.

6.1.1 Algorithm for Disguising Phantoms in Advertisements:
The procedure 𝑚𝑎𝑖𝑛 in Algorithm 1 receives four arguments:

𝑣𝑖𝑑𝑒𝑜 (a 3Dmatrix representing the advertisement), 𝑛𝐶 (the number

of consecutive frames that need to be compromised), and the ℎ𝑒𝑖𝑔ℎ𝑡

and𝑤𝑖𝑑𝑡ℎ (the size of a phantom to be embedded in the video). The

algorithm returns a 3D array of scores, where the value in each

cell of the array represents a "disguising" score in cases in which a

phantom is embedded in the cell. First, the algorithm extracts key

points for every frame based on the SURF algorithm [4]. Key points

represent interest points in an image; they are used for many tasks

in computer vision (e.g., object recognition, image registration)

and are also used to represent interesting areas in a frame that a



Figure 4: From left to right: Original frame; key points (in blue) extracted from the McDonald’s advertisement; heatmap of a
frame’s local score; spectrogram of a block’s global score with respect to the next three consecutive frames in the ad.
Algorithm 1 Rank-Blocks

1: procedure Main(height, width, video, nC)

2: grids[][][] = extract-key points(height, width, video)

3: local [][][] = local-score(grids)

4: global [][][] = global-score(local-scores,nC)

5: return global

6: procedure extract-key points(height, width, video)
7: for (i =0; i< len(video);i++) do
8: k-p [][] = SURF(video[i])

9: for (x =0; x< len(key points); x++) do
10: for (y =0; y< len(key points[0]); y++) do
11: grids [i][x % width][y % height] += k-p[x][y]

12: return grids

13: procedure local-score(grids)
14: for (f=0; f<len(grids); f++) do
15: grid = grids[f]

16: for (x1=0; x1<len(grid); x1++) do
17: for (y1=0; y1<len(grid[0]); y1++) do
18: scores[f][x1][y1] = local-score-block(grid,x1,y1)

19: return scores

20: procedure local-score-block(grid,x1,y1)
21: score = 0

22: for (x2=0; x2<len(grid); x2++) do
23: for (y2=0; y2<len(grid[0]); y2++) do
24: score += (1 +

√
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2)×grid[x2][y2]

25: score/= (1 + grid[x1][y1])

26: return score

27: procedure global-score(local-scores,nC)
28: for (f=0; f<len(grids)-nC; f++) do
29: for (x=0; x<len(grid); x++) do
30: for (y=0; y<len(grid[0]); y++) do
31: for (i=f; i<f+nC; i++) do
32: global[f][x][y] += local[i][x][y]

33: return global

viewer is likely to focus on. Fig. 4 presents a visual demonstration

of the output of this stage on a frame from a random McDonald’s

advertisement that we picked. Then, the algorithm (1) divides the

frame into a grid where each cell in the grid is the size of ℎ𝑒𝑖𝑔ℎ𝑡 x

𝑤𝑖𝑑𝑡ℎ, and (2) counts the number of key points within each cell.

Next, the algorithm computes a local score for every block in a

frame that represents how distant a block is from the interesting

parts of the frame (since attackers are more likely to embed phan-

toms into areas that viewers will not focus on). This is implemented

according to the following approach: a block with a larger number

of key points is likely to interest a viewer more than a block with a

smaller number of key points or no key points. An optimal block in

this respect is a block that is located far from all of the interesting

blocks in a frame. In order to compute a score for how far the block

𝑏𝑖 located at (x1,y1) is from the block 𝑏 𝑗 located at (x2,y2) with

respect to the number of key points in block (x2,y2), the algorithm

first extracts (1) the Euclidean distance between blocks 𝑏𝑖 and 𝑏 𝑗 ,

and (2) 𝑛𝐾𝑃 (𝑏 𝑗 ), which is the number of key points in block 𝑏 𝑗 ;

then the algorithm calculates their product:

𝑠𝑐𝑜𝑟𝑒 (𝑏𝑖 , 𝑏 𝑗 ) =
√
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ∗ 𝑛𝐾𝑃 (𝑏 𝑗 )

where 𝑏𝑖 located at (x1,y1), 𝑏 𝑗 located at (x2,y2)
(1)

The result of this calculation is greater as the distance between

blocks 𝑏𝑖 and 𝑏 𝑗 increases or the number of key points in block

𝑏 𝑗 increases. The local score of a block 𝑏𝑖 in a frame 𝑓 is the sum

of scores between block 𝑏𝑖 to all other blocks in 𝑓 , divided by the

number of key points in 𝑏𝑖 :

𝑙𝑜𝑐𝑎𝑙 − 𝑠𝑐𝑜𝑟𝑒𝑓 (𝑏𝑖 ) =

∑
∀𝑏 𝑗

𝑠𝑐𝑜𝑟𝑒 (𝑏𝑖 , 𝑏 𝑗 )

1 + 𝑛𝐾𝑃 (𝑏𝑖 )
(2)

Fig. 4 illustrates this stage on a frame (after we normalized the

scores to [0,1]) in the form of a heatmap.

Since an ADAS’s cameras can work at a lower FPS rate (e.g., 12

FPS) than the FPS of the advertisement (e.g., 24 FPS), a phantom

may need to appear on several consecutive frames (𝑛𝐶) which can

be provided by the attackers as input to the algorithm. For example,

Mobileye detects phantoms that are presented for 125 ms, so a

phantom needs to appear on three frames of a 24 FPS video in order

to be detected by Mobileye. In such cases (where 𝑛𝐶 > 1), the global

score of a block that takes the notion of time into account needs to

be computed. This is because the local score of a block can change

between two consecutive frames, so the global score of block 𝑏𝑖 in

frame 𝑓 with respect to the next 𝑛𝐶 consecutive frames is the sum

of the block’s 𝑙𝑜𝑐𝑎𝑙 − 𝑠𝑐𝑜𝑟𝑒𝑓 (𝑏𝑖 ) from frame 𝑓 to 𝑓 + 𝑛𝐶:

𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑠𝑐𝑜𝑟𝑒 (𝑏𝑖 , 𝑓 𝑟𝑎𝑚𝑒, 𝑛𝐶) =
𝑓 𝑟𝑎𝑚𝑒+𝑛𝐶∑
𝑓 =𝑓 𝑟𝑎𝑚𝑒

𝑙𝑜𝑐𝑎𝑙 − 𝑠𝑐𝑜𝑟𝑒𝑓 (𝑏𝑖 ) (3)

The ideal block and frame for disguising a phantom is the block

that received the highest score. Fig. 4 illustrates the global score of

each block (with respect to the next three consecutive frames) for

the entire advertisement.

6.1.2 Validation: We picked a random McDonald’s advertisement

from YouTube. We applied Algorithm 1 on the advertisement and

located the optimal block and frame for hiding the phantom (the

block with the maximal global score). Based on the analysis of the

influence of the duration of a phantom’s projection on the success

rate of the attack (which is presented in Fig. 3), we embedded: (1)

a speed limit sign into three consecutive frames (125 ms) of the

advertisement in order to attack Mobileye 630, and (2) a stop sign

into nine consecutive frames (500 ms) of the advertisement in order

to attack the Tesla Model X. The compromised advertisements can



Figure 5:Mobileye issues an alert about
a phantom road sign after the phantom
speed limit was detected in the upper
left corner of the digital billboard.

Figure 6: Tesla’s autopilot triggers the
car to stop suddenly after a phantom
stop sign was detected in the upper left
corner of the digital billboard.

Figure 7: A phantom (boxed in red) is pro-
jected on a building for 125ms froma drone
and recognized by Mobileye (boxed in yel-
low) as real.

be seen here.
2
The size of the road sign in each advertisement was

selected according to the size of the digital billboard that was used

in the following experiments (according to the analysis in Fig 3).

Below, we demonstrate how we used the advertisements to attack

a car equipped with Mobileye 630 and the Tesla.

First we demonstrate the attack on a car equipped with Mobileye

630 via a digital advertisement presented on a digital billboard

in an underground parking lot. The experiment was conducted

in the underground parking lot of a building on our university

campus after we received the proper approvals from the security

department. The attacker used a 65 inch TV screen (which was used

to simulate a digital billboard) that was placed on a sidewalk in the

parking lot. We used this setup to demonstrate the attack, since we

had no intention of hacking a real digital billboard in this study. The

experimentwas conducted as follows:While driving the car through

the parking lot, the compromised Mcdonald’s advertisement was

played on the TV screen with a phantom of a 90 km/h speed limit

sign presented for 125 ms. Fig. 5 presents a snapshot from the 125

ms that the phantom was presented on the left upper corner of

the screen. The attack was successful, since Mobileye detected the

phantom and notified the driver of the 90 km/h speed limit, although

driving faster than 30 km/h in this parking lot is prohibited. The

reader can view a video of this experiment online.
2

We now demonstrate the attack on Tesla Model X (HW 3) via a

digital advertisement presented on a digital billboard located near

a road. The experiment was conducted on a road on our university

campus after we received the proper approvals from the security

department. The attacker used a 42 inch TV screen (which was used

to simulate a digital billboard and was plugged into another car

for electricity) that was placed in the middle of the road. We used

this setup to demonstrate the attack, since we had no intention

of hacking a real digital billboard in this study. The experiment

was conducted as follows: We engaged Tesla’s autopilot at the

beginning of the road. The Tesla approached the middle of the

road where the TV screen presented the compromised McDonald’s

advertisement (with the embedded 500 ms stop sign). Fig. 6 presents

a snapshot from the 500 ms that the phantom was presented on the

upper left corner on the screen. The attack was successful, since

Tesla’s autopilot identified the phantom stop sign and immediately

triggered the car to stop in the middle of the road. The reader can

view a video of this experiment online.
2

2
https://youtu.be/-E0t_s6bT_4

6.2 Phantom Attack via a Projector
First we demonstrated the attack on a car equipped with Mo-

bileye 630. This experiment was conducted on a road with a 30

km/h speed limit, with the permission of the local authorities. The

attacker used a drone (DJI Matrice 600) with a portable projector.

The target was a car (Renault Captur) equipped with Mobileye.

The experiment was conducted as follows: While driving the car

through this urban environment, the drone projected a 90 km/h

speed limit sign onto a building for 125 ms, within the Mobileye’s

field of view. Fig. 7 presents a snapshot of the phantom used in this

experiment. The attack was successful, since Mobileye detected the

phantom and notified the driver of the 90 km/h speed limit. The

reader can view a video of this experiment online
3
.

We then validated the phantom attack on a Tesla Model X (HW

2.5). As was shown in Fig. 1 and 2, this model recognizes phan-

toms of depthless objects as real obstacles despite the fact that it

is equipped with depth sensors (see Fig. 13). In this experiment,

we projected a phantom of a pedestrian onto a road which was

closed after receiving permission to close the road from the local

authorities. The phantom was not projected from a drone, since

local flight regulations prohibit the use of drones near roads and

highways. Furthermore, we projected a constant phantom instead

of projecting it for a split second. This was done for ethical reasons,

since the vehicle may swerve due to the sudden appearance of a

pedestrian, and risk the lives of the driver and potential bystanders.

We note that this experiment was performed to validate that phan-

tom attacks are effective on moving vehicles; the effectiveness of

split-second attacks on a Tesla was shown in sections 5 and 6.1.2.

The experiment was performed by driving the Tesla towards the

projected pedestrian with the cruise control set at 18 MPH (see Fig.

8). The result was that the Tesla automatically applied the brakes

(slowing from 18 MPH to 14 MPH) to avoid a collision with the

phantom pedestrian. In summary, the car detected the phantom

as a real obstacle and reacted accordingly. The reader can view a

video of this experiment online.
3

The responsible disclosure of our findings to Tesla and Mobileye

is presented in Appendix 3.

7 Detecting Phantoms
Even though autonomous systems also use RADAR and LIDAR

to sense the vehicle’s environment, we found that these systems

rely on the camera sensor to avoid making potentially fatal mistakes

3
https://youtu.be/1cSw4fXYqWI

https://youtu.be/-E0t_s6bT_4
https://youtu.be/1cSw4fXYqWI


Figure 8: The Tesla automatically driving at a speed of 18
MPH detects a phantom pedestrian that is projected on the
road as a real obstacle (see a snapshot of its dashboard in the
box on the left) and automatically triggers the brakes (see a
later snapshot of its dashboard in the box on the right).

(e.g., failing to detect a pedestrian in the street). This makes sense

since manufactures would rather have the system react (e.g., stop

or swerve the vehicle) than run the risk of causing an accident. In

these situations, we propose an add-on software module which can

validate objects identified using the camera sensor.

As discussed in Section 3, ADASs and autonomous systems of-

ten ignore a detected object’s context and authenticity (i.e., how

realistic it looks). This is because the computer vision model is only

concerned with matching geometry and has no concept of what

fake objects (phantoms) look like. Therefore, we propose that a

phantom detection module should validate the legitimacy of the

object given its context and authenticity. In general, we identify six

aspects which can be analyzed to detect a phantom image:

Size. If the size of the detected object is larger or smaller than it

should be, the detected object should be disregarded, e.g., a

traffic sign which is not regulation size. The size and distance

of an object can be determined via the camera sensors alone

through stereoscopic imaging [43], though multiple cameras

directed in the same direction are required.

Angle. If the angle of the object does not match its placement in

the frame, it is indicative of a phantom. The skew of a 2D

object facing a camera changes depending on which side

of the frame it is situated. A phantom may be projected at

an angle onto a surface, or the surface may not be directly

facing the camera. As a result, the captured object may be

skewed in an anomalous way.

Focus. For projected phantoms, the detected object may be blurry

in regions outside of the projector’s focal range (see Fig. 17).

For example, when projected at an angle to the surface or

on a lumpy surface.

Context. If the placement of the object is impossible or simply

abnormal, it is indicative of a phantom, e.g., a traffic sign

that does not have a post or a pedestrian ‘floating’ over the

ground.

Surface. If the surface of the object is distorted or lumpy, or has fea-

tures which do not match the typical features of the detected

object, then it is likely a phantom, e.g., when a phantom is

projected onto a brick wall or an uneven surface.

Lighting. If the object is too bright given its location (e.g., in the

shade) or time of day, then it is likely a phantom. This can

be determined passively through image analysis or actively

by shining a light source onto the object (e.g., flash photog-

raphy).

Depth. If the object has the wrong surface shape, or its placement

in a 3D scene is abnormal, then the object may be a phantom.

For example, a traffic sign projected on an uneven surface

(like the tree in Fig. 2), or a 3D person or car projected on the

surface of the road (figures 1 and 2). To extract an implicit

depth perception from an existing camera on the vehicle,

we suggest computing the optical flow between subsequent

video frames (discussed more in detail later on).

These are the aspects were identified by visually comparing hun-

dreds of phantoms in various environments to images of real ob-

jects. We note that this list may be incomplete and other aspects

for identifying a phantom from an image may exist.

In the following subsections, we present one possible implemen-

tation to a countermeasure which considers the last four aspects.

We focus on detecting projected phantom traffic signs, because we

can evaluate our approach in conjunction with eight s.o.t.a traffic

sign detectors. We also note that traffic sign location databases do

not mitigate traffic sign phantom attacks because temporary traf-

fic signs are very common. For example, caution and speed signs

in construction zones, and stop signs on school buses. Finally, al-

though we focus on traffic signs, the same approach can be applied

to other types of phantom objects (pedestrians, cars).

7.1 The GhostBusters
Overall, the proposed countermeasure works as follows. When-

ever an object is detected using the vehicle’s image recognition

model, the detected object is cropped from the image and passed to

our model. The model then predicts if the object is a phantom (has

an abnormal setting is not realistic). If the object is determined to

be a phantom, the system can then decide whether or not to trust

the detected object. The model can be used on every detected object

or only on those which the controller deems urgent (e.g., to avoid

an imminent collision with a person).

Let 𝑥𝑡 be an RBG traffic sign image cropped from video frame

𝑡 where the sign is centered and takes up approximately
1

9
-th of

the image. To predict whether or not 𝑥𝑡 is a phantom or real, we

could build a convolutional neural network (CNN) classifier which

receives 𝑥𝑡 and predicts whether it is real or fake. However, this

approach would make the CNN reliant on specific features and thus

would not generalize to phantoms projected on different surfaces

or made using different types of projectors. For example, the light

intensity of a traffic sign is an obvious way to visually distinguish

between a real and projected sign. However, a CNN trained on the

entire sign would primarily focus on this aspect alone and make

errors when phantoms are projected on different surfaces or made

using different projectors (not used in the training set).

To avoid this bias, we utilize the committee of experts approach

used in machine learning [26] in which there is an ensemble of

models, each of which has a different perspective or capability of

interpreting the training data. By separating these perspectives,

we (1) become more resilient when one aspect fails to capture the

evidence, and (2) we lower the false alarm rate by focusing the

network on relevant features only.

Our committee, called the GhostBusters, consists of four deep
CNN models, each focusing on a different aspect (see Fig. 9 for the
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architecture and the model’s parameters). The models receive a

cropped image of a traffic sign and then judge if the sign is authentic

and contextually makes sense:

Context Model. This CNN receives the context: the area surround-

ing the traffic sign. This is obtained by taking 𝑥𝑡 , re-scaling

it to a 128×128 image, and then setting the center (a 45×45
box) to zero. Given a context, the model is trained to predict

whether a sign is appropriate or not. The goal of this model

is to determine whether the placement of a sign makes sense

in a given location.

Surface Model. This CNN receives the sign’s surface: the cropped

sign alone in full color. This is obtained by cropping 𝑥𝑡 and

re-scaling it to a 128×128 image. Given a surface, the model is

trained to predict whether or not the sign’s surface is realistic.

For example, a sign with tree leaves or brick patterns inside

is not realistic, but a smooth one is.

Light Model. This CNN receives the light intensity of the sign.

This is created with the cropped and scaled 𝑥𝑡 , by taking the

maximum value from each pixel’s RGB values. Formally

𝑥 [𝑖, 𝑗] = argmax

𝑘
𝑥𝑡 [𝑖, 𝑗, 𝑘] (4)

The goal of this model is to detect whether a sign’s light-

ing is irregular. This can be used to differentiate real signs

from phantom signs, because the paint on signs reflects light

differently than the way light is emitted from projected signs.

Depth Model. This CNN receives the apparent depth (distance)

of the scenery in the image. To obtain this, we compute the

optical flow between 𝑥𝑡 and the same space from the last

frame, denoted 𝑥𝑡−1. The optical flow is a 2D vector field

where each vector captures the displacement of the pixels

from 𝑥𝑡−1 to 𝑥𝑡 . In particular, with OpenCV, we utilize the

Gunner Farneback algorithm [18] to obtain the 2D field 𝑣 ,

and then convert it to an HSV image by computing each

vector’s angle and magnitude:

𝑥 [𝑖, 𝑗, 0] = sin
−1

(
𝑣 [𝑖, 𝑗, 1]/

√
𝑣 [𝑖, 𝑗, 0]2

)
× 180/2𝜋

𝑥 [𝑖, 𝑗, 1] = 255

𝑥 [𝑖, 𝑗, 2] = 𝑛𝑜𝑟𝑚_𝑚𝑖𝑛𝑚𝑎𝑥

(√
𝑣 [𝑖, 𝑗, 0]2 + 𝑣 [𝑖, 𝑗, 1]2

)
∗ 255

(5)

The HSV image is converted to an RGB image before passing

it to the CNN. The significance of this approach is that we

can obtain an implicit 3D view of the scenery while the

vehicle is in motion. This enables the model to perceive the

sign’s placement and shape better using only one camera.

Fig. 14 presents some examples of the model’s input based

on various sampled 𝑥𝑡 .

To make a prediction on whether or not a sign is real or fake, we

combine the knowledge of the fourmodels into a final prediction: As

an image is passed through each of the models, we capture the acti-

vation of the fifth layer’s neurons. This vector provides a latent rep-

resentation (embedding) of the model’s reasoning on why it thinks

the given instance should be predicted as a certain class. We then

concatenate the embeddings to form a summary of the given image.

Finally, a fifth neural network is trained to classify the cropped sign

as real or fake using the concatenated embeddings as its input. Over-

all, the entire neural network has 1, 145, 654 trainable parameters.

7.2 Experiment Setup
To validate the proposed countermeasure, we evaluate the (1)

the system’s detection performance, (2) the attack success rates



Table 4: Detection Rates Using s.o.t.a traffic sign Detectors
Attack Success Rate
Countermeasure

With Without
Threshold: @0.5 @[FPR=0]

[52] faster_rcnn_inception_resnet_v2 0.098% 0.294% 87.16%

[52] faster_rcnn_resnet_101 0.098% 0.588% 96.08%

[52] faster_rcnn_resnet50 0.098% 0.588% 81.29%

[28] faster_rcnn_inception_v2 0.098% 0.588% 93.05%

[13] rfcn_resnet101 0.098% 0.588% 99.71%

[25] ssd_inception_v2 0.0% 0.294% 81.98%Si
gn

D
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r

[24] ssd_mobilenet_v1 0.098% 0.588% 83.45%

on different s.o.t.a traffic sign detectors, and (3) the models effi-

ciency (speed/resources). We also analyse the importance of each

individual model placed in a collective through an ablation study,

and compare our models’ performance to a baseline (a single CNN

classifier trained on the cropped images).

Dataset. To generate training and testing data, we recorded videos
using a dash cam with a driver seat perspective. The first set of

videos contained three hours of driving around a city at night. We

denote the frames extracted from these videos as 𝑅𝑑 . The second

set of videos were recorded while driving around an area where

phantom traffic signs were projected. The frames from these videos

are denoted as 𝐹𝑑 . In the 𝐹𝑑 dataset, we projected 40 different types

of signs in a loop onto nine different surfaces.

We then used the highest performing traffic sign detector (faster

rcnn inception resnet v2) described in [3] to detect and crop all

of the traffic signs in 𝑅𝑑 and 𝐹𝑑 . Each cropped traffic sign 𝑥𝑡 was

collected and places in our dataset 𝑋 . To train the context model,

we needed examples which do not contain signs (denoted as 𝑅𝑛) to

teach themodel the improper placement of signs. For this dataset we

cropped random areas from 𝑅𝑑 such that the center of the cropped

images does not contain a sign.

A summary of how we created the dataset and its number of

samples can be found in Fig. 10.

We note that the proposed models (experts) can work in practice

when trained on data similar to ours. This is because the imagery

captured while driving around different environments generalizes

well to similar ones unseen during training [6, 20, 58, 62]. For ex-

ample, NVIDIA recently demonstrated how a single camera can

be used to accurately predict the size and depth of objects for au-

tonomous driving, using similar training data [12]. Most companies

have 𝑅𝑑 available so the challenge is collecting 𝐹𝑑 . Therefore, to

expedite the collection of 𝐹𝑑 , one can (1) mount a projector on

top of a car, (2) drive around an urban area while displaying ran-

dom phantoms, and (3) save all frames where the object detector

identified the object (since it would potentially fool the ADAS).

This approach would quickly generate a wide variety of successful

phantom attacks on various surfaces and in different contexts and

environments.

Training. The Context, Surface, Light, and Depth models were

trained separately, and then the Combiner model was trained on

their embeddings. Regarding the data, %80 of 𝑋 was used to train

the models, and the remaining %20 was used to evaluate them as a

test set. To reduce bias, the test set contained videos and phantom

projections on surfaces which were not in the training set. Finally,

training was performed on an NVIDIA 2080 ti GPU for 25 epochs.

Figure 11: The receiver operating characteristic curve and
AUC measure for different combinations of the models.
Model Acronyms C: Context, S: Surface, L:Light, D: Depth.

7.3 Experiment Results
7.3.1 Model Performance: In Fig. 11 we present the receiver operat-

ing characteristic (ROC) plot and the area under the ROC (AUC) for

combinations of the Context, Surface, Light, Depth models, where

the combination of all four is the proposed model. The ROC shows

the true positive rate (TPR) and false positive rate (FPR) for every

possible prediction threshold, and the AUC provides an overall

performance measure of a classifier (AUC=1 : perfect predictions,

AUC=0.5 : random guessing).

There is a trade-off when setting a threshold: a lower threshold

will decrease the FPR but often decrease the TPR as well. In our

case, it is critical that the proposed module predict real signs as

real every time because the vast majority of signs passed to our

module will be real. Therefore, even a very small FPR would make

the solution impractical. Therefore, in Table 2 we provide the TPR

and FPR of the models when the threshold is set to 0.5 (the default

for softmax) and for the threshold value at which the FPR is zero.

As can be seen in Table 2, the proposed model (C+S+L+D) out

performs all other model’s combinations and the baseline model (a

CNN classifier trained on 𝑥𝑡 𝑖𝑛𝑋 ). As noted earlier, the combined

model outperforms the baseline model because it focuses on the

relevant information and is less dependent on any one aspect/fea-

ture. We also note that the Depth model has a lower AUC than the

others because it is only effective while the vehicle is in motion.

7.3.2 Ablation Study: Since the combination of all four models

provides the best results, it is a clear indication that each aspect

(context, surface, light, and depth) contributes a unique and im-

portant perspective on the difference between a real and phantom

traffic sign. With the exception of a few cases, further evidence

that each model has a unique contribution can be seen in Table

2 where all pairs of models are better than any single model, and

all triplets are better than all pairs, etc. This is important since in

order for the committee of experts approach to be effective there

must be some disagreements between the models. Table 3 measures

the number of disagreements each combination has on the test

set. Interestingly, the full combination (C+S+L+D) has the highest

number of disagreements and results in the highest TPR at FPR=0.

In Fig. 15, we provide some visual examples of the disagreements

which resulted in a correct prediction by the Combined model. In

some cases, a model simply misclassifies although the evidence is



Table 2: The TPR and FPR of the Countermeasure Models at Different Thresholds. C: Context, S: Surface, L: Light, D: Depth
 

C: Context, S: Surface, L: Light, D: Depth 

                Proposed Baseline 

  C S L D C+S C+L C+D S+L S+D L+D C+S+L C+S+D C+L+D S+L+D C+S+L+D Cropped Image 

Threshold 

@ 0.5 

TPR 0.730 0.997 0.990 0.992 0.998 0.990 0.990 0.990 0.995 0.996 0.989 0.995 0.992 0.999 0.998 1.000 

FPR 0.281 0.002 0.006 0.214 0.002 0.004 0.165 0.004 0.009 0.002 0.004 0.016 0.002 0.002 0.002 1.000 

Threshold 

@ [FPR=0] 

TPR 0.049 0.796 0.017 0.150 0.986 0.221 0.725 0 0.990 0.985 0.667 0.987 0.987 0.993 0.994 0.906 

FPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TPR: Ratio of phantoms detected, FPR: Ratio of road signs misclassified as phantoms 

WE note the fpr=0 rates because it dangerous to make no mistakes on a regular daily basis. 

Although it the context model seems to generate a lot of false positives, the combined model benefits from its input. Concretely, without the context model, the combined 

model’s AUC drops from X to 0.9969, and when FPR is zero, the percent of phantoms misclassified as real jumps from 0.85% to 74% (1-TPR).  

 

Disagreement Between the Models 

 Disagreement on… C, S C, L C, D S, L S, D L, D C, S, L C, S, D C, L, D S, L, D C, S, L, D 

Threshold 

@ 0.5 

Phantoms 86.12% 88.03% 75.65% 3.65% 17.92% 15.70% 88.90% 89.85% 89.69% 18.64% 90.25% 

Real Signs 10.80% 11.74% 11.50% 0.99% 1.22% 2.21% 11.76% 11.76% 12.72% 2.21% 12.72% 

Threshold 

@ [FPR=0] 

Phantoms 55.75% 0% 3.97% 55.75% 54.16% 3.97% 55.75% 56.94% 3.97% 56.94% 56.94% 

Real Signs 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Higher percentages of disagreements is better 

  Attack Success Rate 

 Countermeasure 

  With Without 

 Threshold: @0.5  @[FPR=0]  

S
ig

n
 D

et
ec

to
r 

faster_rcnn_inception_resnet_v2 0.098% 0.294% 87.16% 
faster_rcnn_resnet_101 0.098% 0.588% 96.08% 
faster_rcnn_resnet50 0.098% 0.588% 81.29% 

faster_rcnn_inception_v2 0.098% 0.588% 93.05% 
rfcn_resnet101 0.098% 0.588% 99.71% 

ssd_inception_v2 0.0% 0.294% 81.98% 
ssd_mobilenet_v1 0.098% 0.588% 83.45% 

 

Table 3: The Disagreement Between the Models

 

C: Context, S: Surface, L: Light, D: Depth 

  C S L D C+S C+L C+D S+L S+D L+D C+S+L C+S+D C+L+D S+L+D C+S+L+D 

Threshold 

@ 0.5 

TPR 0.730 0.997 0.990 0.992 0.998 0.990 0.990 0.990 0.995 0.996 0.989 0.995 0.992 0.999 0.998 

FPR 0.281 0.002 0.006 0.214 0.002 0.004 0.165 0.004 0.009 0.002 0.004 0.016 0.002 0.002 0.002 

Threshold 

@ [FPR=0] 

TPR 0.049 0.796 0.017 0.150 0.986 0.221 0.725 0 0.990 0.985 0.667 0.987 0.987 0.993 0.994 

FPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TPR: Ratio of phantoms detected, FPR: Ratio of road signs misclassified as phantoms 

WE note the fpr=0 rates because it dangerous to make no mistakes on a regular daily basis. 

Although it the context model seems to generate a lot of false positives, the combined model benefits from its input. Concretely, without the context model, the combined 

model’s AUC drops from X to 0.9969, and when FPR is zero, the percent of phantoms misclassified as real jumps from 0.85% to 74% (1-TPR).  

 

Disagreement Between the Models 

 Disagreement on… C, S C, L C, D S, L S, D L, D C, S, L C, S, D C, L, D S, L, D C, S, L, D 

Threshold 

@ 0.5 

Phantoms 86.12% 88.03% 75.65% 3.65% 17.92% 15.70% 88.90% 89.85% 89.69% 18.64% 90.25% 

Real Signs 10.80% 11.74% 11.50% 0.99% 1.22% 2.21% 11.76% 11.76% 12.72% 2.21% 12.72% 

Threshold 

@ [FPR=0] 

Phantoms 55.75% 0% 3.97% 55.75% 54.16% 3.97% 55.75% 56.94% 3.97% 56.94% 56.94% 

Real Signs 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Higher percentages of disagreements is better 

  
clear. For example, sometimes the Context model does not realize

that the sign is on the back of a truck (bottom right corner of Fig. 15).

In other cases, a model misclassifies because its perspective does not

contain the required evidence. For example, sometimes the Context

model finds it abnormal for a sign to be floating on a horizontal

structure (top left corner of Fig. 15). Regardless, in all cases the

other models provided a strong vote of confidence contrary to the

erroneous opinion, which led to the correct prediction.

However, this approach is not perfect. Fig. 16 provides an exam-

ple of a case in which the Combiner model failed. Here the sign is

real, but only the Context model identified it as such. However, due

to motion blur, the other models strongly disagreed.

7.3.3 Countermeasure Performance: The proposed module filters

out untrusted (phantom) traffic signs detected by the on-board

object detector. Since there are many different implementations

of traffic sign detectors, one detector may be fooled by a specific

phantom while another would not. Therefore, to determine how

effective our module is within a system, we evaluated phantom

attacks on seven s.o.t.a traffic sign detectors [3]. We measured the

attack success rate on a detector as the percent of phantom signs in

𝐹𝑑 identified as a sign. In Table 4 we present the attack success rates

on each detector before and after applying our countermeasure,

and the impact of the different thresholds. The results show that the

detectors are highly susceptible to phantom attacks and that our

countermeasure provides effective mitigation, even at the threshold

where there are zero false positives on the test set.

Therefore our countermeasure is reliable enough for daily usage

(it is expected to make very few false positives) and will detect a

phantommost of the time. However, our training set only contained

several hours of video footage. For this solution to be deployed, it is

recommended that the models be trained on much larger datasets.

We also suggest that additional models which consider size and

angle be considered as well.

7.3.4 Adversarial Machine Learning Attacks: It is well known that

deep learning models, such as those used in our countermeasure,

are susceptible to adversarial machine learning attacks. A concern

with our system is that an attacker will craft a phantom projection

that will both fool the traffic sign detector and cause our model to

predict ‘real’ with high confidence. This attack would be relatively

easy to achieve when using a single CNN as a phantom detector.

However, our committee of experts is strong against such attacks.

This is because the attacker only has control over the pixels which

he projects but not the physical attributes of the projected image.

Furthermore, the attacker is limited since he must project on a rela-

tively smooth surface, making it easier for the Context and Depth

models to identify the attack, regardless of the content. Therefore,

even if the attacker fools the Surface Model CNN, the combined

model will still detect the object as fake and mitigate the attack.

To evaluate this concept, we used the framework in [46] to at-

tack each expert with eight different white box adversarial machine

learning evasion attacks [5, 8, 9, 21, 29, 32, 40, 48]. For each ex-

pert and attack, we measured the expert’s accuracy alone and the

committee’s accuracy when that expert is targeted.

In Fig. 12 we present the results along with visual examples. The

results demonstrate that the committee is much stronger than any

one expert. Since it is especially challenging to physically craft an

adversarial sample for the light and depth experts, the collective

model remains robust to targeted attacks. For results on attacking

different combinations of experts, please see Table 6 in the appendix.

One exception is the IFGSM method which negatively impacts

the committee’s decision (except when targeting the Surface model).

However, there exists many works which specifically mitigate the

IFGSM attacks, for example [14, 16, 30, 37, 38, 41, 63]. Regardless,

it is important to note that adversarial attacks are a cat and mouse

game and our solution is not impervious to future adversarial at-

tacks. However, these results indicate that the committee approach

raises the difficulty bar for attackers, since the attacker (1) must

craft complex physical features (e.g., light and depth), (2) is limited

in the location they can perform the attack (context), and (3) must

generate adversarial samples that capture multiple physical aspects

(experts) at once.

7.4 Generalization to other Phantom Objects
In our evaluation, we showed how the GhostBusters work in

the context of phantom road signs. However, the same approach

generalizes to other phantom objects.

Light Consider a phantom pedestrian. Compared to a real pedes-

trian, a phantom pedestrian emits more light than usual,

especially when considering the reluctance of different ma-

terials in direct light (glasses, belt, clothes, etc.) Moreover,

if the phantom is on the road in front of the car, the car’s

headlights saturate the projection and erase many of the

details. This is also observed in the left of Fig. 3 where a

more intense phantom was required at 3m than 4.5m since

the headlights were covering the phantom.
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Figure 12: Results from the adversarial experiment. Top:
The accuracy of each expert under adversarial attacks, both
alone and within the committee. Bottom: A phantom road
sign perturbed to be detected as ‘real’ by the Surface Model.

Surface When projected on the road (to trigger a collision) the

image will receive abnormal textures and color patterns due

to the surface. For example, sewers, cracks, street markings,

and the asphalt all distort the projected image (see Fig. 17).

The same can be said when road signs and traffic lights are

projected on walls and other vertical surfaces.

Depth All 3D objects projected onto a flat surface will not be

detected as 3D by the depth expert. This is because there is

no foreground/background so the entire surface will have the

same shift between frames. The exception is when 2D objects,

such as road signs, are projected. In this case the strength

of the committee’s different perspectives are leveraged to

make the decision. On the contrary, when other experts fail,

the depth expert can assist in mitigating false positives as

seen in Fig. 15.

Context The context of road sign is very clear, but it may be diffi-

cult to capture the context for other objects. In general, ob-

jects displayed in digital billboards will be within the frame

of the display, and phantoms projected on irregular surfaces

(e.g., a pedestrian floating on the back of a truck) will also

be detected. However, a road projected pedestrian may legit-

imately look like someone crossing a street. Regardless, the

committee should still work well with and without this ex-

pert, as demonstrated in Table 2. Furthermore, one can also

add new expert, not evaluated in this paper, to strengthen

the diversity. For example, a size expert based on [12] can be

used to identify contradictory sizes (a road projection can

stretch several meters as seen in Fig. 17).

8 Conclusions, Discussion & Future Work
The findings of this research are not intended to minimize the

findings of previous studies that presented adversarial machine

learning attacks against computer vision algorithms. Split-second

phantom attacks represent an additional class of visual spoofing

that should be considered. Our research is not aimed at casting

doubt on the car industry’s many years of experience, discounting

the use of sensor fusion for cyber-physical systems, or taking any

side in the ongoing debate regarding the use of LiDAR or radar for

semi/fully autonomous cars [1]. The fact is that sensor fusion based

on radar is the safest approach for semi/fully autonomous vehicles,

and recent reports from Tesla show that its autopilot is safer than a

human driver [59]. The purpose of this research is to demonstrate

that like previous attacks on autonomous vehicles [65] have shown,

sensor fusion still has edge cases that need to be taken into account.

One might get the impression that we claim that Teslas are

programmed to always trust a video camera over radar. We can only

hypothesize how Teslas are programmed, because Telsa’s engineers

did not provide any details. However, we believe that the reason

that Tesla followed the video camera over the radar is the result of

another policy. A previous study [65] demonstrated that the Tesla

can be tricked into considering obstacles by applying spoofing

and jamming attacks to an integrated sensor (radar or ultrasonic

sensors). In both cases, the car follows a single sensor despite the

fact that there was no visual validation. Having that in mind, we

believe that the Tesla is programmed to consider classifications

that were made from just a single sensor if they have crossed a

predefined level of confidence. This policy can explain why the

Tesla considers radio and ultrasonic phantoms [65], as well as visual

phantoms, even without any additional validation.

Another question that arises from this research is: Can split-

second phantom attacks be applied to cars that rely on a different

set of sensors than those used by Tesla? Visual phantoms represent

an edge case of disagreement between depth sensors and video

cameras. We approached two self-driving car manufacturers (level

4) and asked them to allow us to evaluate the behavior of their cars

in response to split-second second phantom attacks, however nei-

ther of them responded positively. However, we find the question of

whether the attacks can be applied to other semi/fully autonomous

cars as irrelevant, because attackers can create the same sort of chal-

lenge for self-driving cars that rely on LiDAR and video cameras. In

our opinion, phantoms are the result of a policy regarding how the

car should behave when there is a case of disagreement between

sensors. This question is not addressed specifically by any of the

recent standards, leaving car manufacturers the space to implement

a policy based on their experience. We hope that this research will

result in guidelines/standards regarding such edge cases.

As future work, we suggest exploring whether split-second phan-

tom attacks can be applied remotely via digital bus ads. We also

suggest examining whether phantom attacks can be applied using

infrared projection, exploiting the fact that a narrow spectrum of

frequencies, the near infrared, is also captured by some CMOS sen-

sors (this fact was exploited to mislead facial recognition algorithms

[64, 67], to establish an optical covert channel [22, 45], and to break

the confidentiality of FPV channel of commercial drones [44]). It

would also be interesting to evaluate a specific kind of phantom

where a complete sign or part of a sign is projected onto another.

We also suggest testing the robustness of other commercial ADASs

to phantom attacks and investigating whether phantoms of other

3D objects can trick the ADAS (e.g., pets, traffic cones, traffic lights).
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Appendix 1 - Extended Discussion on the
Scientific Gap

As was discussed in Section 3, object detectors do not take the

following aspects into consideration:

Color - An object’s color is not taken into account by many

state-of-the-art (s.o.t.a.) object detectors. In practice, these object

detectors base their decisions on the difference between the color of

the object and the background. An object detector classifies a phan-

tom traffic sign that was created by reducing the green component

in Δ=3 in the gray background from (128,128,128) to (128,125,128).

We prove that this is a fact for s.o.t.a. traffic sign recognition algo-

rithms [3]. Table 5 presents the minimal RGB difference required

to change a given background color so that s.o.t.a. algorithms will

consider it real. Four out of seven of the algorithms examined can be

fooled into detecting a traffic sign by reducing the green component

in the gray background in Δ=6 from (128,128,128) to (128,124,128).

(iii) Texture - An object’s texture is not taken into account. Object

detectors classify a phantom traffic sign as a real sign even if the

phantom traffic sign is partially filled or even transparent. We prove

that this is a fact for s.o.t.a. traffic sign recognition algorithms [3].

Table 5 presents the minimal percentage of pixels from the original

speed limit sign required to cause s.o.t.a. algorithms to consider the

sparse speed limit sign as real. Four out of seven of the algorithms

examined detected phantoms that were composed of less than half

of the pixels from the original sign.

Therefore, although phantoms are perceived by humans as ob-

vious fakes (defective, skewed, etc.), object detection algorithms

will classify a phantom simply because its geometry matches their

training examples.

Table 5: The minimal background RGB gradient required to
change a gray background in order to fool existing s.o.t.a
traffic sign detectors [3]. The minimal percentage of pixels
of a real traffic sign required to fool the algorithms.

RGB Components Density

∇ RGB ∇ R ∇ G ∇ B Pixels(%)

T
r
a
ffi
c
S
i
g
n
D
e
t
e
c
t
o
r

faster_rcnn_inception_resnet_v2 [28, 52] 12 36 12 18 80

faster_rcnn_resnet_101 [23, 52] 6 18 6 6 45

faster_rcnn_resnet50 [23, 52] 4 21 3 6 25

faster_rcnn_inception_v2 [28, 52] 4 18 6 12 30

rfcn_resnet101 [13, 23] 8 24 3 6 30

ssd_mobilenet_v1 [24, 36] 22 66 18 36 75

yolo_v2 [50] 10 33 21 30 55

Appendix 2 - Using the Collected Data to
Calculate Phantom Projection Intensity and Size
for Greater Distances

Based on the data presented in Fig. 3, we can calculate the phan-

tom projection intensity and size required to attack an ADAS that

is located at distances greater than those used in the experiment.

The required projection intensity/size of the projection to attack

an ADAS that is located in greater ranges that were measured in

the experiment in Section 5 can be calculated by applying linear

regression to the results. For example, the following equation was

created from applying a linear regression to the dataset that maps

projection intensity to maximal distance:

Range (Δ Lux=l) = 0.66 × 𝑙 + 7.71 (6)

Equation 6 results in the following: the correlation coefficient (𝑟 ) =

0.98, the residual sum of squares (𝑟𝑠𝑠) = 0.75, and the coefficient of

determination (𝑅2) = 0.97. The same calculation can also be applied

to calculate the required phantom size to greater ranges than the

ranges measured in the experiment.

Appendix 3 - Responsible Disclosure
We shared our findings with Mobileye’s bug bounty via email.

On 28/6/19 Mobileye responded: "There was no exploit here, no

vulnerability, no flaw, and nothing of interest. The system saw an

image of a street sign-good enough, accept it and move on."

We also shared our findings with Tesla’s bug bounty via email.

The course of events is summarized as follows:

On 1/5/19, we sent Tesla a demonstration of a phantom speed

limit sign captured by Mobileye 630. Tesla replied: "This is an inter-

esting concept. Rest assured that Tesla is doing ongoing research to
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Table 6: The accuracy of the experts alone (left) and as a committee (right) when targeted with various adversarial machine
learning attacks. Note that the adversarial samples were generated directly on the input images, yet it is difficult to physically
create an adversarial samples for depth, light, and in some cases context –via a phantom attack.

Accuracy of Expert Accuracy of Committee
Target: C S L D C S L D C+S C+L C+D S+L S+D L+D C+S+L C+S+D C+L+D S+L+D C+S+L+D

[5] Adversarial Patch 6.9 64.1 99.6 50.3 99.7 99.8 99.7 99.2 99.6 98.7 95.6 99.8 98.7 96.0 99.7 99.7 99.7 99.8 99.7

[8] Carlini L2 3.3 49.1 96.4 85.0 99.5 99.8 98.7 99.8 99.4 98.7 99.8 99.0 99.8 99.4 99.5 99.5 99.5 99.8 99.5

[40] DeepFool 81.8 21.2 7.2 3.2 96.2 99.6 37.3 64.1 95.6 36.1 34.5 33.9 58.4 6.7 96.2 96.2 96.2 99.6 96.2

[9] ElasticNet 0.0 0.2 7.9 0.8 99.5 99.7 58.5 98.7 99.6 56.5 96.4 57.9 98.7 11.1 99.5 99.5 99.5 99.7 99.5

[21] FGSM 0.0 20.1 59.2 0.0 86.3 99.7 86.4 97.1 96.2 30.1 18.9 83.5 96.7 10.9 86.3 86.3 86.3 99.7 86.3

[32] IFGSM 0.0 0.0 3.7 0.0 8.0 99.4 3.3 1.8 65.0 70.7 14.6 2.4 0.1 0.0 8.0 8.0 8.0 99.4 8.0

[29] NewtonFool 20.4 88.7 99.3 77.4 99.4 99.8 96.7 98.3 99.4 93.0 97.6 96.3 98.3 91.7 99.4 99.4 99.4 99.8 99.4

[48] Saliency Map 0.0 0.0 0.0 0.0 99.5 99.8 90.4 99.6 99.6 88.2 99.6 93.4 99.6 78.3 99.5 99.5 99.5 99.8 99.5

ensure the operational safety of our vehicles. We will be happy to

receive and evaluate any further report from you and your team on

practical attacks." On 20/9/19 we sent Tesla an email that contained

video demonstrations of phantom attacks against their cars. On

22/9/19, we sent another email to Tesla asking them whether they

believe their car to be immune against phantom attacks. At the

time of writing, Tesla has not responded to our question. At

Appendix 4 - Additional Evaluations for the
Countermeasure
Speed Performance

The proposed module must run in real-time and share the vehi-

cle’s computing resources. Therefore, We have performed a speed

benchmark to measure it’s performance. To perform the bench-

mark, we used an NVIDIA 2080 ti GPU and processed 100 batches

of 500 signs.

We found that the module was took an average of 1.2 ms to

process each sign, with a deviation of 242 ns. This translates to

approximately 838 signs per second. We also note that the model is

relatively small and only utilized 0.04% of the GPU per sign, maxing

out at about 35% utilization at 838 signs per second.

Appendix 5 - Additional Figures

Figure 13: The areas that are covered by each of Tesla sensors.
The dashed red lines show areas that are covered by depth
sensors. Most of the areas around the car are covered only
by video cameras.

Figure 14: Examples of how dense optical flow between
frames captures the depth of the environment. Left: the cur-
rent frame, right: the our extracted RGB optical flow image
for the Depth Model.

Figure 15: A few examples of disagreements between experts
which led to correct predictions.

Figure 16: An example of a false positive, where the Com-
biner model failed due to a disagreement.



Figure 17: Examples of artifacts of road phantoms detected
by the surface expert. Note that the projection is at a slight
angle so although the images aren’t perceived as skewed by
the victim, the bottom of the phantom will still be out of
focus.
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