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Abstract
Two main classes of optical TEMPEST attacks against the con-
fidentiality of information processed/delivered by devices have
been demonstrated in the past two decades; the first class includes
methods for recovering content from monitors, and the second
class includes methods for recovering keystrokes from physical
and virtual keyboards. In this paper, we identify a new class of
optical TEMPEST attacks: recovering sound by analyzing optical
emanations from a device’s power indicator LED. We analyze the
response of the power indicator LED of various devices to sound
and show that there is an optical correlation between the sound that
is played by connected speakers and the intensity of their power
indicator LED due to the facts that: (1) the power indicator LED
of various devices is connected directly to the power line, (2) the
intensity of a device’s power indicator LED is correlative to the
power consumption, and (3) many devices lack a dedicated means
of countering this phenomenon. Based on our findings, we present
the Glowworm attack, an optical TEMPEST attack that can be used
by eavesdroppers to recover sound by analyzing optical measure-
ments obtained via an electro-optical sensor directed at the power
indicator LED of various devices (e.g., speakers, USB hub splitters,
and microcontrollers). We propose an optical-audio transformation
(OAT) to recover sound by isolating the speech from the optical
measurements obtained by directing an electro-optical sensor at
a device’s power indicator LED. Finally, we test the performance
of the Glowworm attack in various experimental setups and show
that an eavesdropper can apply the attack to recover speech from
a speaker’s power LED indicator with good intelligibility from a
distance of 15 meters and with fair intelligibility from 35 meters.
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1 Introduction
Optical TEMPEST attacks [23], which are methods aimed at recov-
ering information from systems through optical side effects, pose a
great risk to privacy. In the past two decades, various studies have
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demonstrated novel techniques for recovering/extracting informa-
tion from victim devices using optical sensors by exploiting the
correlation between the optical side effects of the information and
the device that is used to deliver/process the information. In this
context, two main classes of attacks were introduced; the first class
includes methods for recovering content from monitors [15, 17, 38].
The second class includes methods for recovering keystrokes from
physical and virtual keyboards [18, 46, 52, 53, 56, 64, 65]. In these
studies, optical data that was obtained directly from the victim
device’s optical emanations (e.g., [38]) or indirectly from reflections
of the victim device’s optical emanations on nearby objects (e.g.,
[15, 17]) was used to recover the desired information from a victim
device. These studies have contributed to improved understanding
regarding the risks posed by optical TEMPEST attacks.

In this paper, we identify a new class of optical TEMPEST at-
tacks: sound recovery by analyzing optical emanations obtained
from a device’s power indicator LED. We show that the power indi-
cator LED of various devices leaks information regarding the sound
played by connected speakers. This occurs in devices whose power
indicator LED is connected directly to the device’s power line and
lack integrated voltage stabilizers. As a result, the optical response
(intensity) of the power indicator LED of such devices is correlative
to the power consumed by the device. This fact can be exploited to
recover sound from the connected speakers directly, by obtaining
optical measurements via an electro-optical sensor directed at the
speakers’ power indicator LED, or indirectly, by obtaining optical
measurements via an electro-optical sensor directed at the power
indicator LED of the device used to supply power to the speakers
(e.g., USB hub, microcontrollers).

Previous studies have discussed the risks a device’s power in-
dicator LED can pose to the information delivered/processed by
the device due to the linear response of the power indicator LED
[35, 43]. This fact was exploited in some studies to establish covert
channels by using a preinstalled malware that modulated the data
via a device’s power indicator LED [29–31], however no prior work
was able to demonstrate end-to-end sound recovery from a com-
mercial device’s power indicator LED without the use of malware.
Other studies [22, 47, 48, 55] presented optical methods for recov-
ering sound by turning nearby objects into diaphragms (e.g., a
hanging light bulb [48], bag of chips [22], trash can [55], glass
window [47]). In these studies, sound was recovered by obtaining
optical measurements from vibrating objects (objects vibrate when
sound waves hit their surface). However, each of these methods
[22, 47, 48, 55] suffer from one or more of the following limitations:
(1) they are limited in range (the nearby vibrating object must be
within five centimeters of the sound source [22, 48]), (2) their appli-
cation can be detected by an optical sensor (because they require
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the eavesdropper to direct a laser beam into the victim’s room [55]),
(3) they require the eavesdropper to compromise a device with
malware (to stop the LiDAR from turning so it can target a specific
point or to exifltrate the collected data via the Internet [55]). In
addition, all of the methods target the optical changes resulting
from minuscule vibrations of nearby objects that were affected
by sound hitting their surface. We consider these methods to be
optical side-channel attacks rather than optical TEMPEST attacks,
because they do not target the optical correlation between the in-
formation and the device used to deliver/process the information.
A recent paper presented a state-of-the-art sound recovery method
[21] using an EMR TEMPEST attack against devices that contain an
MSOC (mixed-signal system-on-chip) with an integrated switching
regulator from a distance of 15 meters, however, to the best of our
knowledge, no study has proposed a method capable of recovering
sound from a device at distances greater than 15 meters using a
TEMPEST attack.

In this paper, we present the Glowworm attack, an optical TEM-
PEST attack aimed at recovering sound played by commercial speak-
ers. First, we analyze speakers and show that the intensity of their
power indicator LED is affected by played audio. Then, we analyze
various devices (USB hub splitter, micro-controller) used to supply
power for the speakers and show that the intensity of the devices’
power indicator LED is also affected by audio played by the speak-
ers. Then, we suggest an optical-audio transformation (OAT) to
isolate the sound from the optical signal obtained via an electro-
optical sensor directed at the power indicator LED of the devices.
Finally, we examine the performance of the Glowworm attack in
various experimental setups. We show that it can be used by an
eavesdropper to recover speech from virtual meetings by obtaining
optical measurements directly from the power LED indicator of
speakers with good intelligibility from a distance of 15 meters and
with fair intelligibility from 35 meters.

In this paper, we make the following contributions: (1) We reveal
a new class of optical TEMPEST attack that violates the confiden-
tiality of the information processed/delivered by devices; the attack
should be addressed by hardware manufacturers and considered
by consumers. (2) We show that optical TEMPEST attack can re-
cover sound from a device at greater distances (35 meters) than an
existing SOTA method that used an EMR TEMPEST attack (whose
range was limited to 15 meters) [21]. (3) We propose a new method
for recovering speech that is external (obtains data without com-
promising a device in the target room), passive (does not rely on
an active sensor), and does not depend on the distance between a
sound source and a nearby object.

The remainder of the paper is structured as follows: In Section 2,
we review related work. In Section 3, we present the threat model.
In Section 4, we analyze the response of a device’s power indicator
LED to sound played by speakers. In Section 5, we present an
optical audio transformation (OAT) for recovering sound, and in
Section 6, we evaluate Glowworm’s performance on the task of
recovering sound. In Section 7, we discuss potential improvements
that can be made to optimize the quality of the sound recovered by
an eavesdropper. In Section 8, we suggest countermeasure methods
that can be applied to prevent the proposed Glowworm attack. In
Section 9, we present the responsible disclosure we made. In Section

10, we discuss the limitations of the attack and mention future work
directions.

2 Related Work
In this section, we review related work in the area of optical data
leakage and sound eavesdropping. TEMPEST attacks have attracted
the interest of many researchers since Van Eck’s paper was pub-
lished in the mid-1980s [60]. The last three and a half decades have
seen the development of variousmethods for extracting information
from devices by exploiting the correlation between the informa-
tion delivered/processed by a device and its: EMR emanations (e.g.,
[20, 21, 26]), acoustic emanations (e.g., [13, 16, 25, 32, 57, 67]), vi-
brations (e.g., [12, 14, 42, 45, 62, 66]), and power consumption (e.g.,
[36, 37, 44]). In the past two decades, two main classes of optical
TEMPEST attacks were introduced; the first class includes methods
for recovering content from monitors [15, 17, 38], and the second
class includes methods for recovering keystrokes from physical and
virtual keyboards [18, 46, 52, 53, 56, 64, 65]. In these studies, optical
data that was obtained directly from the victim device’s optical
emanations (e.g., [38]) or indirectly from reflections of the victim
device’s optical emanations on nearby objects (e.g., [15, 17]) was
used to recover the desired information from a victim device.

The risks posed by a device’s power indicator LEDwere discussed
by [35, 43]. However, prior research demonstratingmethods capable
of exploiting a device’s power indicator LED for data exifltration
relied on preinstalled malware to establish optical covert channels
[29–31]. The proposed methods leak data from devices that are
connected to air-gapped networks by using preinstalled malware
that modulated data optically via the integrated LED of a device
(e.g., a keyboard [29], router [30], hard drive [31]).

Recent studies have investigated sound eavesdropping [12, 14,
28, 39, 45, 54, 66], suggesting various methods for recovering sound
by analyzing the side effects of sound waves that caused nearby
lightweight objects (e.g., a bag of chips, a window) and devices
(e.g., motion sensors) to vibrate (turning such objects/devices to
diaphragms). In this context, malware was used to recover sound by:
(1) obtaining data from a device’s motion sensors [12, 14, 45, 66], (2)
reprogramming a computer’s audio port from output to input [28],
(3) inverting the process of a vibration motor [54], and (4) analyzing
magnetic data obtained from a hard disk head [39]. These methods
pose a serious threat to privacy, but they require the eavesdropper to
compromise a device (with malware) located near the victim (sound
source) in order to obtain data and exfiltrate it to the eavesdropper.

Optical methods for sound recovery were introduced by [22, 47,
48, 55]. A recent study demonstrated a method capable of classi-
fying words from a precollected dictionary, by analyzing the vi-
brations of a trash can using optical data obtained via a robotic
vacuum cleaner’s LiDAR. This method requires the eavesdropper
to compromise the robotic vacuum cleaner in order to: (1) prevent
the LiDAR from turning and fix the LiDAR on a specific object to
increase the amount of data collected from the vibrating object
(because the frequency of a robotic vacuum cleaner’s 360◦ LiDAR
is limited to 7 Hz), and (2) exfiltrate the data from the robotic vac-
uum cleaner. Three studies [22, 47, 48] presented external optical
methods to recover sound that rely on data obtained via optical
sensors, without the use of malware. The laser microphone [47, 47]
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Figure 1: Glowworm’s threat model: The sound 𝑠𝑛𝑑 (𝑡) of the virtual meeting (1) which is played by the connected speakers cre-
ates changes in the power consumption of the power indicator LED of a (2) connected peripheral (e.g., the speakers themselves,
a USB hub splitter). The eavesdropper directs an electro-optical sensor at the power indicator LED of a connected peripheral
using a telescope (3). The optical signal 𝑜𝑝𝑡 (𝑡) is sampled from the electro-optical sensor via an ADC (4) and processed, using
an algorithm to recover the acoustic signal 𝑠𝑛𝑑∗ (𝑡) (5).

is a well-known method that recovers sound using an external laser
transceiver in which a laser beam is directed through a window
into a target room; the laser beam is reflected off an object and re-
turned to the transceiver which then converts the beam to an audio
signal. The visual microphone [22] recovers sound by analyzing
the vibrations of material inside the victim’s room (e.g., a bag of
chips, water) using video obtained from a high-speed video camera
(2200 FPS) to recover speech. Lamphone [48] recovers sound using
a remote electro-optical sensor by exploiting the vibrations of a
hanging light bulb; the vibrations cause optical changes due to the
non-uniform intensity of lighting, which varies at each angle. These
methods [22, 47, 48] pose a great privacy threat, however from an
eavesdropper’s perspective, they are limited in one of the following
ways: they rely on (1) a very high sound level (over 100 dB) which
is beyond the sound level of speech and meetings (e.g., [22, 48]), (2)
active sensors that use a laser beam (e.g., [47]), a fact that increases
the likelihood of detection (compared to passive sensors), (3) hang-
ing light bulbs, which are not commonly used in office settings
today (e.g., Lamphone [48]), or (4) specialized equipment for spy-
ing [47], a fact that may limit their availability in some countries
(limiting the sale of such equipment to, e.g., police departments).

3 Threat Model
In this section, we describe the threat model and explain its sig-
nificance with respect to other methods. The Glowworm attack
targets the speech of participants in virtual meeting platforms (e.g.,
Zoom, Google Meet, Skype, Microsoft Teams). During the COVID-
19 pandemic, these platforms became a popular way for people to
meet and share information; personal and valuable information is
routinely exchanged when these platforms are used for personal
and business meetings.

We assume that an individual is located inside a room or office
and using his/her computer to conduct a virtual meeting with
another person (or a group) using a virtual meeting platform. The
purpose of the conversation can vary, for example, the individuals
may want to discuss business (e.g., sharing something with a client
or colleague) or something of a personal nature (e.g., talking about
medical test results with a doctor).

We consider an eavesdropper that is a malicious entity interested
in recovering speech from meetings and using the valuable infor-
mation discussed in the meeting for a malicious purpose that may
include spying on individuals (e.g., to obtain sensitive information
that can be used for blackmail) or spying on an organizations (e.g.,

to obtain a company’s IP and use it to give a competitor an advan-
tage). We assume the eavesdropper is located within 35 meters of
the target room. The eavesdropper can be: (1) a person located in
a room in an adjacent building, (2) a person in a nearby car. We
consider this threat as highly probable in the COVID-19 era due
to the number of personal and business meetings being held in
unsecured settings, including home offices.

In order to recover the sound in this scenario, the eavesdrop-
per performs the Glowworm attack. We assume that the a power
indicator LED of a vulnerable device is visible from outside the
room/office. We consider two types of attacks: (1) a direct attack,
where the eavesdropper recovers sound from the power indicator
LED of the speakers, and (2) an indirect attack, where the eaves-
dropper recovers sound from the power indicator LED of the device
used to provide the power to the speakers (e.g., a connected USB
hub, a microcontroller). Note that the Glowworm attack can be
applied by eavesdroppers to recover: (1) the speech of any person
speaking to the victim during a virtual meeting, and (2) any sound
(e.g., music from YouTube, videos from the Internet) that is played
by the speakers during the virtual meeting, which may or may not
be related to the meeting; in this paper, we present the attack in
the context of recovering speech from a virtual meeting.

The main components used to perform the Glowworm attack
are: (1) A telescope - This piece of equipment is used to focus the
field of view on a device’s power indicator LED from a distance. (2)
An electro-optical sensor - This sensor is mounted on the telescope
and consists of a photodiode that converts light into an electrical
current; the current is generated when photons are absorbed in the
photodiode. (3) A sound recovery system - This system receives an
optical signal as input and outputs the recovered acoustic signal.
The eavesdropper can implement such a system with: (a) dedicated
hardware (e.g., using capacitors, resistors), or (b) the use of ADC
to sample the electro-optical sensor and process the data using a
sound recovery algorithm running on a laptop. In this study, we
use the latter digital approach.

Fig. 1 outlines the threat model: The sound 𝑠𝑛𝑑 (𝑡) played by the
speakers in the victim’s room results in changes in the power con-
sumption due to the direct connection of the power indicator LED
to the input power line and the device’s lack of voltage stabilizers.
These changes in power consumption influence the intensity of the
light produced by the device’s power indicator LED, resulting in a
pattern of changes over time that the eavesdropper measures with
an optical sensor which is directed at a device’s power indicator
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Figure 2: Left: Four of the devices examined in the experiments described in Section 4. Center: A Thorlabs PDA100A2 electro-
optical sensor (boxed in red) is directed at the power indicator LED of a USB hub splitter (boxed in yellow). Right: The USB
adapter is connected to the (1) speakers, (2) power socket, and (3) ADC via a BNC cable which is used to measure the power
consumed by the USB hub splitter.

LED via a telescope. The analog output of the electro-optical sen-
sor is sampled by the ADC to a digital optical signal 𝑜𝑝𝑡 (𝑡). The
eavesdropper then processes the optical signal 𝑜𝑝𝑡 (𝑡), using an
optical-audio transformation, to an acoustic signal 𝑠𝑛𝑑∗ (𝑡).

In order to keep the digital processing as light as possible in terms
of computation, we sample the electro-optical sensor with the ADC
set at the minimal sampling frequency allowing comprehensible
audio recovery; Glowworm is aimed at recovering speech, and
this requires a sufficient sampling frequency rate. The spectrum
of speech covers quite a wide portion of the audible frequency
spectrum. Speech consists of vowel and consonant sounds; the
vowel sounds and the cavities that contribute to the formation of the
different vowels range from 85 to 180 Hz for a typical adult male and
from 165 to 255 Hz for a typical adult female. In terms of frequency,
the consonant sounds are above 500 Hz (more specifically, in the 2-4
KHz frequency range) [2]. As a result, a telephone system samples
an audio signal at 8 KHz. However, many studies have shown that an
even lower sampling rate is sufficient for recovering comprehensible
sound (e.g., 2200 Hz for the visual microphone [22]). In this study,
we sample the electro-optical sensor at a sampling rate of 4/8 KHz.

The significance of Glowworm’s threat model with respect to
related work is that Glowworm is:

(1) Not dependent on the distance between a sound source and
a nearby object: Glowworm analyzes the intensity of a device’s
power indicator LED, which is affected by a device’s power con-
sumption. As a result, the attack is not limited based on the required
distance between a sound source and a nearby lightweight object
(diaphragm) that vibrates in response to sound (as opposed to other
sound recovery methods that are limited in that there can be no
more than one meter between the sound source and a vibrating
object [12, 14, 22, 39, 45, 47, 48, 54, 55, 61, 63, 66]).

(2) External: Glowworm does not rely on compromising a device
to obtain the data needed to recover sound (as opposed to other
sound recovery methods that require eavesdroppers to compromise
a device with malware first [12, 28, 39, 45, 54, 66]).

(3) Passive and relies on a benign sensor: The method relies
on a passive electro-optical sensor that is not considered spying
equipment and gives no indication regarding its application (as
opposed to the laser microphone [47] in which a laser beam is
directed at a glass window).

(4) Capable of recovering speech without the need to compile
a dictionary: Glowworm can be used to recover any speech (as

opposed to other methods that are limited to classifying isolated
words contained in a precompiled dictionary [12, 45, 61, 66]).

(5) Not dependent on being withing hearing range: Glowworm
can be applied by eavesdroppers that are located beyond hearing
range, from a distance of 15-35 meters (as opposed to other methods
that require the eavesdropper to be located within 15 meters of the
victim [21, 22]).

(6) Capable of recovering speech at a virtual meeting’s sound
level of 70 dB (in contrast to other methods that can only be used
to recover sound at a high volume [22, 39, 48]).

4 Analysis
In this section, we describe the series of experiments performed to
evaluate the risk of optical sound recovery posed by the vulnerabil-
ity of the power indicator LED of various devices. The experiments
analyze: (1) the influence of sound played from speakers on the
power consumption of various devices, (2) the response of the de-
vice’s power indicator LED to sound, and (3) the side effects added
to the optical signal which are not the result of sound played from
the speakers.

The devices used in these experiments are: Logitech S120 speak-
ers [4], Winner speakers [10], a TP-Link UE330 USB hub splitter
[9], a MIRACASE MHUB500 USB hub splitter [5], a Raspberry Pi
(RP) 4, a Google Nest Mini [11], and Creative Pebble speakers [1].
Four of the devices are presented in Fig. 2.

The experiments were conducted as follows: An electro-optical
sensor (the Thorlabs PDA100A2 [8], which is an amplified switch-
able gain light sensor that consists of a photodiode which is used
to convert light/photons to electrical voltage) was directed at the
power indicator LED of each device. The voltage was obtained from
the electro-optical sensor using a 24-bit ADC NI-9234 card [7] and
processed in a LabVIEW script that we wrote. The internal gain
of the electro-optical sensor was set at the highest level before
reaching saturation. The setup is presented in Fig. 2.

4.1 Understanding How Played Sound Affects
the Power Consumption

Here we explore the effect of played sound on a device’s power
consumption and show that it linearly affects the device’s power
indicator LED due to the fact that hardware manufacturers do not
integrate any voltage stabilizers or filters in some products. We
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Figure 3: The six spectrograms on the right are obtained from power (upper row) and optical (bottom row) measurements of
three devices when the speakers played a frequency scan (0-4 KHz) on the left.

show that optical measurements can be used to recover sound using
an electro-optical sensor directed at a device’s power indicator LED
and eliminate any other reasonable side effects that could explain
this phenomenon.

4.1.1 How Played Sound Affects a Device’s Power Consumption and
the Intensity of Its Power Indicator LED Here, we show that the
intensity of a device’s power indicator LED is highly correlated
with the device’s power consumption.

Experimental Setup: We created a USB adapter that allows us
to obtain power measurements from any device with a USB input
connector (the connector can be seen in Fig. 2). We conducted three
experiments. In the first experiment, the Logitech speakers’ USB
was connected to the adapter which was connected directly to the
electricity. In the second experiment, the Logitech speakers’ USB
was connected to the TP-Link USB hub splitter. The input USB
connector of the USB hub splitter was connected to the adapter
which was connected to a PC. In the third experiment, the Logitech
speakers’ USB was connected to the RP. The input micro USB con-
nector of the RP was connected to the adapter which was connected
to the electricity. In all of these experiments, the audio was played
via the speakers (at 70 dB). The audio played from the speakers is a
30 second audio file that consists of a chirp function (a frequency
scan between 0-4 KHz). We obtained optical measurements via the
electro-optical sensor which was directed at the power indicator
LED of the speakers (in the first experiment), the USB hub splitter
(second experiment), and the RP (third experiment). In addition, in
each of the experiments, we obtained power measurements from
the adapter by connecting it to a BNC cable that was connected to
a 24-bit ADC NI-9234 card [7]. The ADC was used to obtain opti-
cal and electrical measurements simultaneously from each tested
device.

Results: Fig. 3 presents (1) three spectrograms extracted from the
optical signal, and (2) three spectrograms extracted from the power
signal. As can be seen, the chirp function played by the speakers
affected the power consumption of all three devices. In the case of
the RP, the frequency scan that was played by the speakers (0-4
KHz) can be spotted in the power consumption signal). In the cases
of the TP-Link USB hub splitter and Logitech speaker, a frequency
scan between 0-8 KHz can be seen in the power consumption signal

(we discuss this phenomenon later in this section). Moreover, as
shown in Fig. 3, the intensity of the power indicator LED of the
devices is perfectly correlated with the power consumed by the
devices (excluding some optical noise which will be discussed later
in the paper).

Conclusions: Based on these experiments, we concluded that: (1)
The power consumed by the three devices correlates with the sound
that the speakers play and the intensity of their power indicator
LED. (2) The manufacturers of these devices do not distort/change
the known linear response of the intensity of an LED to power
consumption [35] by integrating filters and voltage stabilizers into
the electrical circuits. (3) The power consumed by the speakers
influences the devices providing the power to the speakers (e.g.,
USB hub splitter, RP). (4) The linear correlation between the power
consumed by the device, the audio played, and the intensity of the
power indicator LED of the devices shows sound can be recovered
by obtaining optical measurements via an electro-optical sensor
directed at a device’s power indicator LED.

4.1.2 Ruling Out Other Possible Side Effects One might argue that
the optical measurements are affected by a phenomenon unrelated
to the changes in the intensity of a device’s power indicator LED. For
example, one reasonable argument is that electromagnetic radiation
was emitted from the device and was captured by the electro-optical
sensor. Another reasonable argument is that the optical sensor
captures minuscule vibrations of the power indicator LED caused
by the device’s vibrations due to the sound waves produced from
the speakers. In order to disprove these claims, we conducted the
following set of experiments.

Experimental Setup: We placed an RP on a table and directed the
electro-optical sensor at its power indicator LED from a distance
of one meter (through a telescope with a 15 cm lens diameter). We
connected the USB cable of the Logitech speakers to the RP which
was connected to the electricity on the other end. The speakers were
placed on a different surface (than the RP) in order to eliminate any
vibration resulting from the sound waves produced by the speakers.
The speakers played an audio file consisting of a chirp function (a
frequency scan between 200-400 Hz).

We conducted the following three experiments: In the first exper-
iment, we obtained optical measurements when the electro-optical
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Figure 4: From left to right: Spectrograms obtained from optical measurements when the RP’s power indicator LEDwas visible
(first) and covered (second). Spectrograms were obtained from gyroscope measurements from three axes.

sensor was directed at the RP, however we covered the device’s
power indicator LED with tape (to examine whether the played
signal appears in the optical measurements and rule out any effect
of EMR). In the second experiment, we attached a gyroscope (MPU-
6050 GY-521 [6]) to the RP to measure its vibrations (to examine
whether the played signal appears in the gyroscope measurements
and rule out any effect of vibration). We obtained measurements
from the gyroscope via another RP which was used to sample the
gyroscope at 1000 Hz. In the third experiment, we obtained optical
measurements when the electro-optical sensor was directed at the
RP’s power indicator LED (in order to prove that the played signal
can be spotted in the optical measurements). The third experiment
was done for validation.

Results: The results are presented in Fig. 4. As can be seen, the
frequency scan appears in the spectrogram obtained from the opti-
cal measurements when a device’s power indicator LED is visible.
However, the frequency scan cannot be spotted in the spectrograms
obtained from (1) the optical measurements when a device’s power
indicator LED is covered, or (2) the gyroscope measurements in
each of the three axes.

Conclusions: Based on these experiments, we concluded that
(1) the optical measurements are not affected by electromagnetic
radiation (if they were, the frequency scan would have appeared
in the spectrogram when the power indicator LED was covered
with tape); and (2) the optical measurements are not affected by
the vibration caused by the sound waves produced from the speak-
ers (if they were, the frequency scan would have appeared in the
spectrograms obtained from the gyroscope on at least one of the
three axes). These experiments prove that the frequency scan in the
optical measurements obtained from a device’s visible power indi-
cator LED is the result of changes in a device’s power consumption
which linearly affect the intensity of the LED.

4.2 Exploring the Optical Response
Here we explore the recovered optical signal, including the baseline,
side effects added, and SNR (signal-to-noise ratio).

4.2.1 Characterizing the Optical Signal When No Sound Is Played
Here we examine the characteristics of the optical signal when no
sound is played.

Experimental Setup:We obtained five seconds of optical measure-
ments via an electro-optical sensor directed at the power indicator
LED of four devices.

Results: The FFT graphs extracted from the optical measurements
of the devices when no sound was played are presented in Fig. 5.
As can be seen, a peak appears in the FFT at around 100 Hz; this
peak is the result of the fixed light frequency of the LED. Since the

Figure 5: FFT graphs extracted from optical measurements
of the power indicator LED of various devices when no
sound was played. The frequency of the LED (100 Hz) can
be seen in the graph for each device.

optical signal is obtained via an electro-optical sensor directed at
a device’s power indicator LED, there is a side effect in which the
light frequency and its harmonics (200 Hz, 300 Hz, etc.) are added
to the raw optical signal. The optical phenomenon that happens at
100 Hz (which was captured by the electro-optical sensor) is the
result of power net harmonics. Most electronic devices work with
DC voltage that is converted from AC. A diode bridge is integrated
into the electrical device, which flips the negative half of the sinus,
doubling the base frequency from 50 Hz to 100 Hz. As a result, the
LED changes its intensity 100 times a second. These frequencies
impact the optical signal and are not the result of the sound we
wish to recover.

Conclusions: The light frequency and its harmonics, which are
added to the optical signal and are not the result of the sound played,
need to be filtered in order to recover the played signal.

4.2.2 Power Indicator LED’s Response to Sound at 0-4 KHz In the
next experiments, we tested the response of the power indicator
LED of various devices to a wide range of frequencies.

Experimental Setup: We conducted the following experiments:
In the first experiment, we obtained optical measurements from
the power indicator LED of two speakers (Logitech S120 speakers
and Winner speakers) that were connected to the electricity. In the
second experiment, we obtained optical measurements from the
power indicator LED of devices (TP-Link UE330 USB hub splitter
[9], MIRACASE MHUB500 USB hub splitter [5], RP) that were used
to provide power to the speakers via their USB input ports. In
each of the experiments, the audio was played via speakers at a
sound level of 70 dB. The audio played from the speakers is a 30
second audio file that consists of a chirp function (a frequency scan
between 0-4 KHz).

Results: Fig. 6 presents the spectrograms obtained from the opti-
cal measurements. Three observations can be made from the spec-
trograms: (1) For some devices, the signal that appears in the optical
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Figure 6: Spectrograms extracted from optical measurements obtained from the power indicator LED of various devices when
a chirp function was played (frequency scan between 0-4 KHz). Note that in some devices (e.g., Logitech S120 speakers) the
original frequency played by the speakers appears in the spectrum of the optical signal, while in other cases (e.g., TP-Link
UE330, MIRACASE MHUB500), only the first harmonic of the frequency appears in the spectrum of the optical signal.

Figure 7: SNR of various devices in the spectrum of 0-4 KHz at three sound levels (60, 70 dB).
Table 1: Summary of Recovered Optical SNR of Various Devices at Sound Level of 70 dB

Recovered Signal
Device 0-4000 Hz 0-1000 Hz 1000-2000 Hz 2000-3000 Hz 3000-4000 Hz

Manufacturer Model Type Tone Avg.
SNR [dB] STD Avg.

SNR [dB] STD Avg.
SNR [dB] STD Avg.

SNR [dB] STD Avg.
SNR [dB] STD

Logitech S120
Speakers

Original 40.75 7.52 45.09 4.46 41.50 3.59 41.65 5.88 34.42 10.73
Winner Original 58.04 5.67 56.83 7.37 61.34 2.69 58.44 3.30 55.44 6.60
CREATIVE Pebble Modern 2.0 Original 6.95 9.67 17.46 13.35 4.17 2.39 0.2 0.5 6 5.69
TP-Link UE330 USB Hub First harmonic 20.65 14.53 36.85 8.02 21.35 12.37 16.12 10.98 7.61 8.73
MIRACASE MHUB500 First harmonic 10.72 14.79 31.71 11.41 5.33 9.62 2.74 5.66 2.72 5.55
Raspberry Pi 4 Microcontroller Original 15.73 9.59 26.85 6.23 18.21 4.79 11.46 6.16 5.93 5.70
Google Google Nest Smart Assistant Original 1.53 4.15 3.81 6.23 2.3 4.68 0 0 0 0

measurements is much stronger (e.g., Logitech S120 speakers) than
that of other devices (e.g., the RP). (2) For some devices, the signal
obtainedmatches the original chirp function (e.g., Winner speakers).
(3) For some devices, only the first harmonic of the chirp appears
in the spectrogram (e.g., TP-Link USB hub splitter).

Conclusions: Based on these experiments, we concluded that: (1)
For devices with a weak recovered optical signal, the application of
denoising techniques is required to optimize the SNR. (2) For devices
where the recovered optical signal appears in the first harmonic,
the use of downtuning is required.

Next, we conducted an experiment to calculate the SNR of each
of the seven devices (Logitech S120 speakers, Winner speakers,
TP-Link UE330 USB hub splitter, MIRACASE MHUB500 USB hub
splitter, RP, Google Nest Mini, and Creative Pebble speakers) across
the 0-4 kHz spectrum at two levels (60 and 70 dB).

Experimental Setup: We used the same experimental setup as
the previous experiment, however this time we played a different
audio file which consists of various sine waves (120, 170,....1020 Hz),
where each sine wave was played separately for two seconds. We
played the audio file via the the speakers at two sound levels (60
and 70 dB) and obtained optical measurements.

Results: The SNR is presented in Fig. 7 and Table 1. The following
observations can be made based on the results: (1) The SNR changes
depending on the type of device used. This is the result of the
differences in their power consumption and the intensity of the light

emitted from their power indicator LED. (2) For some devices, the
SNR has a low standard deviation (STD) throughout the spectrum
examined (e.g., the STD of the SNR of the optical signal obtained
from the Logitech S120 speakers is 7.5, and the STD of the SNR of
the optical signal obtained from the Winner speakers is 5.6), which
indicates a stable response, while for other devices, the SNR has
a large STD (e.g., RP), which is usually the result of a decrease in
the SNR as a function of the frequency. (3) For some devices, the
effective spectrum that can be used to recover sound is narrow. For
example, the SNR obtained from the power indicator LED of the
MIRACASE MHUB500E is only stable up to 1000 Hz; for this device,
the SNR of the spectrum beyond 1000Hz is extremely unstable. (4) In
general, the SNR of the recovered signal improves as the sound level
increases. This phenomenon can be explained as follows: When the
volume of the sound played by the speakers increases, the power
consumption increases. The power is the product of voltage and
current. The current consumed from AC-DC converter output stage
capacitors (which have a limited amount of energy) increases, and as
a result, the voltage level decreases proportionally to the current and
volume levels. Since a device’s power indicator LED is connected
in parallel to the capacitor, it is linearly affected by voltage levels;
its intensity also increases, and a greater amount of light is emitted.
As a result, more photons are captured by the electro-optical sensor,
which yields a better SNR. (5) The improvement in the SNR that
results from higher volume levels varies depending on the device;
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Figure 8: The influence of the five stages of optical-audio
transformation (OAT) on the recovered signal.

in some cases, the improvement is significant (e.g., the TP-Link USB
hub splitter and RP), while in other cases (e.g., Winner speakers),
the improvement is less dramatic. (6) For some vulnerable devices
(e.g., Google Nest Mini and Creative Pebble speakers), the SNR is
poor due to the weak intensity of their power indicator LED. This
fact requires more sensitive electro-optical sensor (with lower noise
level) to recover sound from their power indicator LED.

Conclusions: Based on these experiments, we concluded that (1)
a sound level of 70 dB (the sound level of virtual meetings) produces
a high SNR, and (2) for devices in which the SNR decreases as a
function of the frequency, an equalizer needs to be used to amplify
the energy of weak frequency ranges.

5 Optical-Acoustic Transformation
In this section, we leverage the findings presented in Section 4
and present optical-acoustic transformation (OAT), which we used
to recover audio signals from the optical signals obtained from
an electro-optical sensor directed at a device’s power indicator
LED. Throughout this section, we consider 𝑠𝑛𝑑 (𝑡) as the audio
played inside the target’s room by the speakers, 𝑜𝑝𝑡 (𝑡) as the optical
signal obtained via an electro-optical sensor directed at the power
indicator LED of a device, and 𝑠𝑛𝑑∗ (𝑡) as the audio signal recovered
from 𝑜𝑝𝑡 (𝑡) using OAT. OAT consists of the following stages:

Filtering Side Effects. As discussed in Section 4 and presented
in Fig. 5, there are factors which affect the optical signal 𝑜𝑝𝑡 (𝑡) that
are not the result of the sound played 𝑠𝑛𝑑 (𝑡) (e.g., peaks which are
added to the spectrum that are the result of the light frequency of
the power indicator LED and its harmonics - 100 Hz, 200 Hz, etc.).
We filter the light frequency and its harmonics (its first, second,
third, ... order harmonics) from 𝑜𝑝𝑡 (𝑡) using notch/bandstop filters.

Downtuning. As discussed in Section 4 and presented in Fig. 6,
in some cases only the second order of the frequencies of the played
signal 𝑠𝑛𝑑 (𝑡) appears in the optical signal 𝑜𝑝𝑡 (𝑡). As a result, the
recovered signal 𝑠𝑛𝑑∗ (𝑡) is uptuned compared to the original signal
𝑠𝑛𝑑 (𝑡) played by the speakers. This case requires the eavesdropper

to apply downtuning to the optical signal 𝑜𝑝𝑡 (𝑡) in order to recover
sound at the original pitch. Downtuning is a standard procedure in
the area of sound processing used to play a song at a lower tone.
We implemented this procedure digitally according to [27].

Speech Enhancement. Speech enhancement is performed to
maximize the signal’s dynamic range before applying additional
filters. To do so, we normalize the signal by scaling the values of
𝑜𝑝𝑡 (𝑡) to the range of [-1,1]

Denoising. This is the process of removing noise from a signal
to increase the SNR and optimize its quality. Various techniques
have been demonstrated to reduce noise, however we reduce noise
by applying spectral subtraction, an adaptive technique proposed
for denoising single channel speech [59].

Equalizer. As discussed in Section 4 and presented in Fig. 7, the
SNR obtained from some devices is unstable and decreases as a
function of the frequency. We use an equalizer in order to amplify
the response of weak frequencies by adjusting the balance between
frequency components within an electronic signal.

The techniques that enable OAT to recover audio signals from
the optical signals are extremely popular in the area of speech pro-
cessing; we used them for the following reasons: (1) the techniques
rely on a speech signal that is obtained from a single channel; if
eavesdroppers have the capability of sampling a device’s power
indicator LED using multiple sensors, thereby obtaining several
signals via multiple channels, other methods can also be applied to
recover an optimized signal, (2) these techniques do not require any
prior data collection to create a model; recent methods use learning-
based models (e.g., neural networks) to optimize the speech quality
in noisy channels, however such methods require a large amount
of data for the training phase in order to create robust models,
something eavesdroppers would likely prefer to avoid, and (3) the
techniques can be applied in real-time applications, so the optical
signal obtained can be converted to audio with minimal delay.

The influence of each step of the OAT on the recovered signal
when the transformation is used to recover an arbitrary sentence
is illustrated in Fig. 8. As can be seen, the raw optical signal is
very noisy. However, the application of speech enhancement and
denoising techniques significantly improves the SNR. The equalizer
is only used for fine-tuning. In the Appendix, we present Algorithm
1, an implementation of OAT’s stages to recover audio from optical
measurements.

6 Evaluation
In this section, we evaluate the performance of the Glowworm
attack in terms of its ability to recover speech from the power indi-
cator LED of various devices. We start by comparing Glowworm’s
performance to the performance of the visual microphone and Lam-
phone in a lab setup. Then, we test the influence of distance and
the sound volume on Glowworm’s performance when recovering
speech through an office’s transparent glass window/door.

The reader can assess the quality of the recovered sound visually
by analyzing the extracted spectrograms, qualitatively by listening
to the recovered audio signal online,1 2 and quantitatively based
on metrics used by the audio processing community to compare a

1 https://youtu.be/Mi6T2K9zQgE
2 https://youtu.be/eZD4SdeKe7E

https://youtu.be/Mi6T2K9zQgE
https://youtu.be/eZD4SdeKe7E
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Figure 9: Experimental setup: the telescope and the four de-
vices used in the experiments. A PDA100A2 electro-optical
sensor is mounted on the telescope. The electro-optical sen-
sor outputs voltage which is sampled via an ADC (NI-9234)
and processed in LabVIEW.

recovered signal to its original signal: (1) Intelligibility - ameasure of
the comprehensibility of speech in given conditions [3]. To measure
intelligibility, we used the metric suggested by [58] which results in
values between [0,1]. A higher intelligibility indicates better sound
quality. (2) Log-Likelihood Ratio (LLR) - a metric that captures how
closely the spectral shape of a recovered signal matches that of
the original clean signal [51]. A lower LLR indicates better sound
quality. (3) NIST-SNR - the speech-to-noise ratio, which is defined
as the logarithmic ratio between the estimated speech power and
noise power over 20 consecutive milliseconds. A higher NIST-SNR
indicates better sound quality.

We used the following equipment and configurations to recover
sound in the experiments conducted and described in this section:
a telescope (with a 20 cm lens diameter) was directed at the power
indicator LED of the device. We mounted an electro-optical sensor
(Thorlabs PDA100A2 [8]) to the telescope. The voltage was obtained
from the electro-optical sensor using a 24-bit ADC NI-9234 card
[7] and was processed in a LabVIEW script that we wrote. The
sampling frequency of the ADC was configured at 2 KHz. In the
remainder of this section we refer to this setup as the eavesdropping
equipment. The level of the played sound was measured using a
professional decibel meter.

6.1 Comparing Glowworm to the Visual
Microphone and Lamphone

First, we compare the performance of Glowworm to that of the
visual microphone [22] and Lamphone [48] using a similar ex-
perimental setup to the one used in the studies presenting those
techniques. In those studies, the recovery of six sentences from the
TIMIT repository [24] was demonstrated by playing the sentences
via speakers and analyzing the recovered speech in a lab setup.
We compare Glowworm’s performance when recovering the same
sentences from the power indicator LED of the four devices that
with the highest SNR in Table 1: Two types of speakers (Logitech

Figure 10:mabw0 sa1:"She had your dark suit in greasywash
water all year" recovered from various devices. The remain-
ing spectrograms from the experiments listed in Table 2 can
be seen in Figs. 16-20 in the Appendix.

S120 and Winner speakers) and two types of USB hub splitters
(TP-Link UE330 and MIRACASE MHUB500).

Experimental Setup: We replicated the experimental setup used
in both the visual microphone [22] and Lamphone [48] studies as
follows: We placed the devices on a desktop inside a lab and played
the same six sentences from the TIMIT repository [24] that were
recovered by the visual microphone and Lamphone via the speak-
ers, at the same volume level used in the visual microphone study
(an average sound level of 95 dB). We note that the speakers we
used this research are not capable of producing speech at sound
levels higher than 85 dB, so we set the maximum sound level. In our
experiment, the eavesdropping equipment was placed 2.5 meters
from the devices, behind a closed door. Our experimental setup
is presented in Fig. 9. In this experiment, the performance of the
Glowworm attack was evaluated on the task of recovering speech
by applying the attack in a direct manner, obtaining optical mea-
surements from the power indicator LED of two speakers, and in
indirect manner, obtaining optical measurements from the power
indicator LED of two USB hub splitters.

Results: We recovered speech by applying OAT to the optical
measurements. The recovered audio signals are available online1
where they can be heard. The signals recovered by the power in-
dicator LED of the two speakers and USB hub splitters when we
played the sentence "She had your dark suit in greasy wash water
all year" are presented in Fig. 10. The spectrograms recovered from
the other five sentences can be seen in Figs. 16-20 in the Appendix.
The intelligibility, LLR, and NIST-SNR of the recovered signals are
reported in Table 2. Comparing these results to the results reported
in the original Lamphone [48] and visual microphone [22] studies
on the same sentences, we find that: (1) The average intelligibility of
the speech recovered from the power indicator LED of the speakers
(by applying the attack in a direct manner) is considered good/fair
(according to [3]), however the average intelligibility of the speech
recovered from the power indicator LED of the USB hub splitters
(by applying the attack in an indirect manner) is considered poor.
The visual microphone and Lamphone yield the same level of re-
sults in terms of intelligibility, as their average intelligibility is also
considered good. (2) The average LLR of the speech recovered from
the power indicator LED of Winner speakers is 1.74, which is lower
(better) than Lamphone’s average LLR (1.8) but higher (worse) than



CCS ’21, November 14–19, 2021, Seoul, South Korea Ben Nassi1 , Yaron Pirutin1 , Tomer Galor2 , Yuval Elovici1 , Boris Zadov1

Table 2: Performance of Glowworm on Speech Recovery from Various Devices

Intelligibility LLR NIST-SNR
Speakers USB Hub Splitters Speakers USB Hub Splitters Speakers USB Hub Splitters

Speech Winner Logitech S120 TP-Link MIRACASE Winner Logitech S120 TP-Link MIRACASE Winner Logitech S120 TP-Link MIRACASE
Female speaker -
fadg0, sa1

"She had your dark suit in
greasy wash water all year" 0.618 0.426 0.378 0.374 1.765 2.238 2.023 2.758 3.3 12.8 5 5

Female speaker -
fadg0, sa2

"Don’t ask me to carry
an oily rag like that" 0.623 0.542 0.341 0.333 1.787 2.39 2.585 2.322 9.5 5 11.5 5

Male speaker -
mccs0, sa1

"She had your dark suit in
greasy wash water all year" 0.666 0.542 0.366 0.350 2.126 2.134 2.154 2.323 15.5 8.8 10.5 5.5

Male speaker -
mccs0, sa2

"Don’t ask me to carry
an oily rag like that" 0.709 0.539 0.428 0.434 1.663 2.508 2.719 2.581 4 15.8 12.3 3.8

Male speaker -
mabw0, sa1

"She had your dark suit in
greasy wash water all year" 0.574 0.45 0.368 0.318 1.576 2.029 2.24 2.009 9.8 8.8 8.8 6

Male speaker -
mabw0, sa2

"Don’t ask me to carry
an oily rag like that" 0.697 0.56 0.368 0.347 1.658 2.176 1.774 2.237 13 20.3 9.3 4.8

Average 0.647 0.509 0.374 0.359 1.763 2.246 2.249 2.372 9.183 11.917 9.567 5.017
STD 0.051 0.056 0.028 0.041 0.276 0.175 0.317 0.263 4.825 5.539 2.592 0.738

the visual microphone’s average LLR (1.53). The average LLR of the
other devices was higher (worse) than that of the visual microphone
and Lamphone. (3) The average NIST-SNR of the speech recovered
from the power indicator LED of the Logitech S120 speakers is 11.9,
which is higher (better) than Lamphone’s average LLR (9.6) but
lower (worse) than the visual microphone’s average LLR (24.5). The
average NIST-SNR of the other devices was lower (worse) than that
of the visual microphone and Lamphone.

We conclude that the quality of the speech recovered by Glow-
worm is highly dependant on the device that is tested. We note
that the Glowworm attack does not rely on the distance between
the sound source and a lightweight vibrating object, whereas the
results reported by Lamphone and the visual microphone are based
on experiments performed when a vibrating object was placed a
few centimeters from speakers. As a result, the quality of a signal
recovered using the Glowworm attack at a fixed distance is stable
and does not vary depending on the distance to nearby objects.

6.2 The Influence of Distance on Glowworm’s
Performance

Next, we evaluate the influence of distance on Glowworm’s perfor-
mance.

We evaluate Glowworm’s performance on the task of recovering
sound at the speech level of a typical virtual meeting: 70 dB. In
the following set of experiments we attempted to recover sound
from the power indicator LED of Winner speakers from various
distances. We placed the speakers on a desktop inside an office; the
eavesdropping equipment was located outside the office, behind
two closed clear glass doors. The setup can be seen in Fig. 11.

First, we start by examining the influence of the sound level on
the SNR.

Experimental Setup: We created an audio file that consists of
various sine waves (120, 170, 220, .... 1970 Hz) and placed the eaves-
dropping equipment 15, 25, and 35 meters away from the speakers.
We played the audio file via the speakers at 70 dB, obtaining the
optical measurements as the sound was played. The electro-optical
sensor was configured for the highest gain level before saturation.

Results: Fig. 12 presents the SNR for various distances. As can
be seen from the results, the SNR looks very promising and stable
through the entire spectrum measured. Unsurprisingly, the SNR

Figure 11: Experimental setup: The eavesdropping equip-
ment, which was placed outside an office (in a location de-
noted by the red rectangle), was directed at the speakers
which were placed in various locations (denoted with blue
stars) at a distance of 15, 25, and 35 meters. Two closed
glass doors separated the eavesdropping equipment and the
speakers (denoted by yellow bars).

Figure 12: The SNR for various distances at 70 dB.

decreases as a function of the distance, since light deteriorates with
distance.

Next, we evaluated Glowworm’s performance in terms of its
ability to recover speech audio from various distances. In order
to do so, we recovered a well-known statement made by Donald
Trump: "We will make America great again!"

Experimental Setup: We placed the eavesdropping equipment at
three distances (15, 25, and 35 meters) from the Winner speakers’
power indicator LED. We played the audio file via the speakers at
70 dB, obtaining the optical measurements as the sound was played.
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Figure 13: "We will make America great again!" recovered
from various distances.
Table 3: "We Will Make America Great Again!" - Results of
Recovered Speech from Various Distances

Intelligibility LLR NIST SNR
15m 0.607 1.704 17.3
25m 0.552 3.24 14
35m 0.476 3.359 9.3

The electro-optical sensor was configured for the highest gain level
before saturation.

Results: We recovered speech by applying OAT to the optical
measurements. The recovered audio signals are available online2
where they can be heard. The spectrogram of the recovered speech
is presented in Fig. 13, and the intelligibility, LLR, and NIST-SNR of
the recovered signals are reported in Table 3.

Conclusions: The results demonstrate that the intelligibility of
the recovered signals is considered good up to a distance of 15
meters and fair up to a distance of 35 meters.

The results obtained show that Glowworm allows eavesdroppers
to recover sound from a distance of 35 meters at a lower sound level
than eavesdropping methods proposed in previous studies which
require higher sound levels of 85-94 dB [39] and +95 dB [22, 63]. In
addition, the results show that by analyzing optical measurements,
eavesdroppers can double the range of the previous SOTA method
used to recover sound from a device using EMR analysis [21].

7 Potential Improvements
In this section, we suggest methods that eavesdroppers can use to
optimize the quality of the recovered audio or increase the range
(i.e., distance between the eavesdropper and a device’s power indi-
cator LED), without changing the setup of the target location.

The potential improvements suggested below are presented
based on the component they optimize.

Telescope. The amount of light that is captured by a telescope
with a diameter of 2𝑟 is determined by the area of its lens (𝜋𝑟2). As
a result, using telescopes with a larger lens diameter enables the
sensor to capture more light and optimizes the SNR of the recovered
audio signal.

Electro-Optical Sensor. The sensitivity of the system can be
enhanced by increasing the sensor’s internal gain. Eavesdroppers
can use a sensor that supports higher internal gain levels (note
that the electro-optical sensor used in this study, PDA100A2 [8],

‘

Figure 14: Circuits vulnerable to the Glowworm attack (a)
and countermeasures using a capacitor (b), an additional
OPAMP amplifier, (c) and the existing OPAMP (d).

outputs voltage in the range of [-10,10] and supports a maximum
internal gain of 70 dB). Alternatively, the sensitivity of the system
can be enhanced by using an electro-optical sensor with a lower
noise level. Another option for maximizing the SNR is to profile
the electro-optical sensor’s self-noise (when the light is recorded)
in order to filter its self noise.

Sound Recovery System. While many advanced denoising
methods have been presented in the audio processing field, a large
amount of data is often required to train a model that profiles the
noise in order to optimize the output’s quality. Such algorithms/-
models can be used in place of the simple methods used in this
research. In addition, various advanced dedicated algorithms for
improving speech quality can also be used to extend the effective
band of the recovered signal (e.g., artificial bandwidth extension
algorithms [33, 34, 41, 49, 50]). In addition, more sensitive ADC
(with lower sound level) can be used to sample the electro-optical
sensor.

8 Countermeasures
In this section, we describe several countermeasure methods that
can be used to mitigate or prevent the Glowworm attack.

Manufacturer side. In most devices the power indicator LED
is connected directly to the power line (see Fig. 14a). As a result,
the device’s power indicator LED is highly affected by the power
consumption fluctuations that occur when speakers produce sound.
To counter this phenomenon, a few approaches should be consid-
ered by hardware manufacturers: (1) Using a capacitor: A capacitor
can be integrated in parallel to the power LED indicator; in this
case, the capacitor behaves as a low-pass filter (see Fig. 14b). This
is a straightforward and inexpensive solution for reducing AC fluc-
tuations. However, in devices with high power consumption, the
integrated capacitor must be large enough to supply a sufficient
amount of current to the speakers. (2) Using an OPAMP: This can
be implemented by integrating an additional OPAMP between the
power line and the power indicator LED (see Fig. 14c) or by using
an existing GPIO port of an integrated microcontroller as a power
supply for the power indicator LED (see Fig. 14d). In both cases,
this will eliminate power line AC fluctuations by a factor of the
OPAMP amplifier’s CMRR (common mode rejection ratio).

Consumer side. The attack can also be prevented by placing
black tape over a device’s power indicator LED. While this solution
decreases a device’s UX, it prevents the attackers from obtaining
optical measurements from vulnerable devices.
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9 Responsible Disclosure
We performed the following steps:

(1) We disclosed the details of the attack with the manufactur-
ers of the devices that were analyzed in this research via
their bug bounty programs and contact-us email addresses:
Google, Logitech, Creative, TP-Link, Raspberry Pi, Winner,
and MIRACASE. The email sent to each of the manufactur-
ers contained explanations about the research, the Glow-
worm attack, proof that their devices are vulnerable to the
Glowworm attack (electric and optical spectrograms of chirp
functions), and recovered speech signals.

(2) We did not share the paper in order to keep the names of the
other manufacturers confidential. In addition, we decided to
refrain from informing manufacturers of devices that were
not tested in this research about the Glowworm attack. We
made this decision in order to prevent the information from
spreading before giving the affected device manufacturers
time to respond.

(3) We encouraged the manufacturers to meet with us in order
to ensure that they understood the problem and assist them
in developing a countermeasure.

(4) We explained to the manufacturers that we sent our findings
to a conference and our paper may become public around
November.

(5) We refrained from: (1) uploading the paper to arXiv, (2) dis-
cussing our findings with other researchers, and (3) sending
the research to non-academic conferences.

Google, TP-Link, and Creative responded to our disclosure, asked
us for more details, sent the findings of this research to their product
team, and informed us that they would update us regarding their
next steps. AS of this writing, Logitech, Raspberry Pi, Winner, and
MIRACASE have not responded to our disclosure.

10 Discussion, Limitations & Future Work
The purpose of this research was to raise awareness regarding the
feasibility of recovering sound by analyzing optical measurements
obtained from an electro-optical sensor directed at a device’s power
indicator LED. While we are the first to demonstrate this method
in the academic realm, we wonder whether our method is already
known within the military and espionage realms. While we can
only hypothesize about the answer to this question, for the fol-
lowing reasons we believe that we are not the first to exploit a
device’s power indicator LED to recover sound: (1) power indicator
LEDs have been integrated into devices for many years, (2) power
indicator LEDs’ linear response to power consumption has been
known for many years, (3) sound recovery is of interest to various
entities around the world, and (4) virtual meeting platforms have
been used for many years, given the fact that their protocols are
encrypted. In addition, the case of the "Great Seal Bug" [19] proved
that a new technology, the RFID, was used by agencies to eavesdrop
three decades before it was scientifically discovered in 1973 [40].

We recommend that other hardware manufacturers empirically
test whether their devices are vulnerable to the Glowworm attack.
We hope that our findings will encourage hardware manufactur-
ers to take our suggestions to empirically test their devices and

Figure 15: Two spectrograms extracted from Logitech speak-
ers: Z200 (left) and Z120 (right). The results show that not all
devices produced by the same manufacturer are vulnerable
to optical TEMPEST attacks.

redesign their electrical circuits (according to the suggestions pro-
vided in Section 8), in order to prevent eavesdroppers from applying
the Glowworm attack in the future. However, we are not certain
that they will implement our suggestions due to the financial im-
plications of doing so, as some of the solutions may increase the
manufacturer’s overall cost, decreasing the revenue or requiring
the manufacturer to increase the price of the product (which could
make the device less attractive to consumers). While the cost of
our countermeasures might seem negligible, given the likelihood
that the devices are mass produced, the addition of a component
to prevent the attack could cost a manufacturer millions of dollars.
Given the cost-driven nature of consumers and the profit-driven
nature of manufacturers, known vulnerabilities are often ignored
as a means of reducing costs. This fact may leave many electrical
circuits vulnerable to Glowworm attack for years to come.

We also note that the area of optical sound eavesdropping has
progressed significantly in the past seven years: a few studies have
presented innovative methods to recover speech using data ac-
quired from a high frequency video camera [22], LiDAR [55], and
an electro-optical sensor [48]. Our attack continues the trend of
recovering sound by exploiting optical side effects, and we believe
that other studies will address this topic in the next few years.

The Glowworm attack suffers from one main disadvantage: The
quality of the sound recovered is proportional to the quality of
the equipment used by the eavesdropper. In our study, the cost
of our equipment came to $1000 ($250 - telescope, $250 - electro-
optical sensor, and $500 - ADC), an investment which allowed
us to recover speech from a distance of 35 meters. In order to
increase the attack range and recover higher quality sound, more
expensive professional equipment is required (e.g., a more sensitive
ADC and electro-optical sensor, a professional telescope). Such
equipment would enable eavesdroppers to recover sound from
vulnerable devices that have very weak LED intensity (e.g., Google
Nest Mini, Creative Pebble speakers). In addition, some electrical
circuits are not vulnerable to the Glowworm attack because they
contain voltage stabilizers and filters that distort/change the known
linear response of the intensity of the LED to power consumption.
Interestingly, we found that while the power indicator LED of
Logitech S120 speakers leaks information regarding the sound that
is played from them, other speakers sold by the same manufacturer,
Logitech Z200 speakers, do not leak such information, as can be
seen in Fig. 15.

For future work, we suggest investigating the possibility of: (1)
improving the Glowworm attack without the use of expensive
equipment (e.g., improving the recovery model by using advanced
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models such as artificial bandwidth extension [33, 34, 41, 49, 50])
and (2) recovering non-acoustic information from devices (e.g, op-
tical cryptanalysis via a device’s power indicator LED).
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11 Sound Recovery Algorithm
The input to the algorithm is (1) 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 − 𝑠𝑡𝑟𝑒𝑎𝑚 - a pointer to
the optical stream (the output of an ADC that samples the electro-
optical sensor), (2) 𝑓 𝑠 - the frequency that the ADC samples, and
(3) a 𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑟 − 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 - a function, which is used for balancing.
The five stages of Algorithm 1 for recovering sound are described
below.

Algorithm 1 Recovering Audio from an Optical Signal
1: INPUT: optical-stream, fs, equalizer-function
2: lightFs = 100
3: while (!isEmpty(optical-stream) do)
4: /*Read from optical-stream to a buffer*/
5: opt[] = read(optical-stream,fs)
6: snd* = opt
7: /*Filtering side effects*/
8: for (i = lightFs; i < fs/2; i+=lightFs) do
9: snd* = bandstop(i,snd*)
10: /*Scaling to [-1,1]*/
11: min = min(snd*), max = max(snd*)
12: for (i = 0; i < len(snd*); i+=1) do
13: snd*[i] = -1 + (𝑠𝑛𝑑∗[𝑖 ]−𝑚𝑖𝑛)∗2

𝑚𝑎𝑥−𝑚𝑖𝑛

14: /*Noise reduction*/
15: snd* = spectral-subtraction(snd*)
16: /*Balancing*/
17: snd* = equalizer(snd*,equalizer-function)
18: play (snd*)

12 Appendix - Spectrograms of Recovered
Speech
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Figure 16: mabw0 sa2: "Don’t ask me to carry an oily rag like that" recovered from various devices.

Figure 17: mccs0 sa2: "Don’t ask me to carry an oily rag like that" recovered from various devices.

Figure 18: mccs0 sa1: "She had your dark suit in greasy wash water all year" recovered from various devices.
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Figure 19: fadg0 sa2:"Don’t ask me to carry an oily rag like that" recovered from various devices.

Figure 20: fadg0 sa1: "She had your dark suit in greasy wash water all year" recovered from various devices.
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